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CHAPTER I

EXECUTIVE SUMMARY

1.1 INTRODUCTION

Cementitious materials such as mortar and concrete are brittle and
have an inherent weakness in resisting tension. They are known to crack
under low levels of tensile strains. The addition of discontinuous fibers to
such matrices leads to a drastic improvement in their toughness. It is
generally agreed that the fiber contribute primarily to the post-cracking
response of the composite by bridging the cracks and p-oviding resistance
to crack opening. The transmission of forces between the fibers and the
matrix is achieved through interfacial bond, defined as the shearing stre-s
at the interface between the fiber and the surrounding matrix. Bond has

been recognized as a major factor in composite action. There is hardly any
property of the composite that is not dependent on bond. Thus there exists

a genuine need to provide a fundamental undestanding of bond and bond

mechanims in fiber reinforced cement composites.

The nature of bond in today's fiber reinforced cementitious

composites is very complex because of the presence and the combined

action of several bond components. These include: 1) physical and

chemical adhesion between fiber and matrix, 2) the mechanical component

of bond such as in deformed, crimped and hooked fibers, 3) fiber to fiber

interlock, or entanglement, which exists in SIFCON even before addition

of the matrix, and 4) friction which is greatly influenced by confinement.

The addition of latex to a cement matrix may add significantly to the
magnitude of the "adhesion" component of bond especially in the

precracking state. The shear stress-slip relation of a smooth fiber may be

-1 -



-2-

substantially different from that of a hooked or deformed fiber. Both may
lead to the same maximum shear yet have drastically different slip
characteristics and pull-out energies. All the above factors must be
accounted for to better undestand the behavior of fiber reinforced cement
composites and develop models to predict their mechanical and fracture
properties.

1.2. OBJECTIVES

The main objective of this research is to investigate the various
fundamental mechanisms of bond, generate a related comprehensive
experimental data base, and develop rational analytical models to describe
bond in fiber reinforced cement based composites. A particular focus is
placed at characterizing bond by a bond shear stress versus slip
relatiohship. Such a relationship is considered to be a constitutive
property of the interface, and, for given conditions, is considered to be
location independent. It is also the objective of this research to better
assess the shear stress distribution along the fiber as well as the
distribution of normal stresses in the fiber and the matrix.

1.3 SUMMARY

Following is a brief summary of what was achieved in this study:

1. A review of the state-of-the-art on bond in conventional reinforced
and prestressed concrete was carried out. Particular attention was
given to the study and determination of a bond shear stress versus
slip relationship (Chapter II) which is believed to be a characteristic
property of the interface to the same extent as a stress-strain curve in
compression or tension. It is observed that the derivative of the slip
between the reinforcemet and the surrounding matrix is the
difference between the strain in the fiber and that in the matrix at a
given point along the reinforcement. Experimental approaches to the

determination of a shear stress-slip relationship are described, and
existing models for bond shear stress distribution are evaluated,
discussed and compared (Chapter III). The most important factors
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affecting bond are reviewed. It is observed that, while the concept
of a bond shear stress versus slip relationship has been applied to

conventional reinforcement, such a relationship has so far not been

developed for fiber reinforced corcrete.

2. A state-of-the-art review on bond in fiber reinforced cement
composites is presented in Chapter IV. The review addresses both
experimental work and analytical studies. Factors affecting bond

and bond mechanisms in cement based composites are discussed.
Observations which are either agreed upon or a subject of
disagreement between researchers are pointed out.

3. A basic analytical study of a typical pull-out test is developed in

Chapter V. The test consists in a fiber embedded in a matrix and
being pulled out at its free end. The study is subdivided into two
parts, one dealing with what is defined as the primal problem and the
other dealing with the dual or reciprocal problem. The primal
problem focuses on predicting the pull-out load versus end slip

response of a pull-out test based on the knowledge of an idealized
bond shear stress versus slip relationship. For small values of slip,
the idealized relatiohship is assumed to be linear perfectly frictional,

and characterized by three parameters, namely a shear modulus, a
maximum shear strength which includes adhesion and friction, and a

frictional shear stress which may be different from the shear

strength. The dual problem, which is the reciprocal of the primal
problem, predicts a bond shear stress versus slip relationship based
on an experimentally obtained pull-out curve. For large slips, in
both problems, decaying friction was considered. It was modeled
using the concept of misfit which accounts for the influence of
normal pressure due to shrinkage of the matrix, and including the

effect of fiber Poisson's ratio. The solution of the dual problem
forms the basis for the interpretation of the results of the

experimental program undertaken in this investigation.

4. A comprehensive experimental program on pull-out and pull-through

tests is described in Chapter VI. . The pull-out load versus end slip
response was carefully measured. Parameters included three
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different types of fibers (smooth, deformed, hooked), three different
mortar matrices with low, medium, and high strengths, one slurry

paste matrix, and additives such as latex, fly ash, and microsilica. 0
Also the medium from which the fiber was pulled out included a

control mix without fibers, mixes with 1%, 2% and 3% fibers by
volume, and a SIFCON matrix containing about 11% fibers by
volume. For smooth fibers, five different diameters and three 0
different embeddment lengths were investigated. Chapter VI also

contains comparisons between experimental pull-out load versus slip
curves and curves predicted by the analytical model developed in

Chapter V. Typical bond shear stress versus slip curves are derived 0

using the analytical approach described in Chapter V and are input in
the solution equations of the primal problem to predict typical pull-
out load versus slip curves and compare them with the experimentally

observed curves. 0

5. Two different and independent analytical models were developed in

Chapters VII and VIII. These models are also independent of the
pull-out problem described in Chapter V and VI. Both models •
assume that the composite has a square packing distribution of fibers
and that a representative unit made out of a prism of matrix

containing one fiber can be analysed in lieu of the composite as a
whole. The first model is based on an assumed bond stress versus

slip relationship that consists of a linear ascending portion followed

by a constant purely frictional portion. It leads to prediction
equations for the stress distribution in the fiber, the matrix and the
interface. Two numerical examples illustrating the application of the

procedure are described in Chapter VII. The second model

developed in Chapter VIII is based on a mechanism of force transfer
between the fiber and the matrix. The mechanism is similar to the

truss analogy method, except that the matrix is assumed uncracked 0
and the external tensile force is applied to the fiber. Thus the model
applies particularly well to the case of continuous fibers or long

fibers bridging more than one crack. The model leads to prediciton
equations for the interfacial shear stresses as well as the normal 0
stresses in the fiber and in the matrix. It also led to the analytical

0
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prediction of a bond modulus as well as the prediction of the

precracking strength of the composite. Chapter VIII also contains a

parametric evaluation of various composite properties using the

model.

1.4 CONCLUDING REMARKS

Specific and detailed conclusions related to the experimental

investigation as well as to the analytical models developed in this study can

be found at the end of Chapters V to VIII. The following conclusions

address more generally the overall objective of this research.

I. For conventional reinforcing bars and prestressing strands, the bond

shear stress versus slip relationship can be determined

experimentally by instrumenting the bar along its length using for

instance, strain gages. Such an approach cannot be used in the case

of small fibers. In this study, bond shear stress versus slip

relationship were derived indirectly from a pull-out test in which the

load and the slip were measured simultaneously.

2. A methodology was developed to derive a bond shear stress versus

slip relationship for various types of smooth fibers. A typical

relationship would be elastic linear up to a maximum shear stress,
* tmax, then drops suddently to a maximum frictional stress, tf, then

decays exponentially to zero with increasing slip. It is observed that

for hooked fibers, the relationship can be obtained from

superimposing two relationships, one characteristic of a smooth fiber
* without the hook and the other characteristic of the hook alone. In a

hooked fiber, the hook tends to straighten under pull-out leading to a

characteristic load versus slip response. However, the slip at which

the load is maximum is substantially larger than that for which the
* load is maximum for a smooth fiber. Deformed fibers have

mechanical deformations uniformely distributed along their length.

The fibers used in this study were dented along segments about 0.2

in long each. Thus they had a section that varied every 0.2 in. They
0 too seem to respond through the surperpositon of two mechanisms,

0
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one due to the adhesion similar to that of a smooth fiber, and the

other due to the mechanical bearing against the surrounding matrix 0

induced by the variation in cross section.

3. For small values of slip, such as encountered up to the peak null-out

load in a typical pull-out test, the bond shear stress versus slip

relationship can be assumed to have, as a first approximation, a

constant frictional property. That is, the decay in friction with the

slip is ignored. Such an assumption greatly simplifies the analytical

model and leads to a negligeable error. 0

4. The medium (slurry, plain matrix, fiber reinforced matrix) from

which a fiber pulls-out influences the pull-out load versus slip curve.

It was observed that the presence of fibers tends to improve

primarily the post peak response in fiber reinforced mortar, and the •

peak load as well as the post peak behavior in SIFCON. The

addition of latex to the matrix leads to a significant improvement in

the peak load (up to four times), but has no effect on the post-peak

response. The addition of microsilica does not seem to improve the 0

bond characteristics of smooth fibers beyond what is predicted from

the induced improvement in matrix strength. The addition of fly ash

to the matrix led to very small improvement in the overall response.
0

5. Everything else being equal, the slip at maximum load for hooked or

deformed fibers is one to two orders of magnitude larger than that of

a smooth fiber. This is due to the mechanical contribution of the

hook in hooked fibers and the non-uniform section in deformed

fibers. As a result, the pull-out work up to the peak load for hooked

and deformed fibers can be ten to twenty times that of a smooth

fiber.
0

6. Everything else being equal, the pull-out work of a hooked or a

deformed fiber up to complete pull-out can be three to four times that

of a smooth fiber.

0

ii 0
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7. A deformed fiber shows in the post peak load response a cyclic

behavior that is characteristic of the way the non uniform section

moves in its surrounding tunnel of matrix.

8. Observed values of maximum pull-out loads on single fibers lead to

the following ranges for the maximum bond stress calculated as the

maximum pull-out load divided by the embedded surface area: from

150 to 400 psi for smooth fibers, from 500 to 1000 psi for hooked

fibers, and from 400 to 950 psi for deformed fibers. It should be

observed that, although differences between smooth fibers and

deformed and hooked fibers are significant, they tend to be smaller

when the whole composite is considered. This is because the pull-

out load per fiber decreases when the number of fibers pulling out
from the same area increases. The addition of latex to the matrix led

to bond stresses as high as about 1400 psi. However, the frictional

stress was similar to that obtained without latex.

9. Observed frictional shear stress values for smooth fibers ranged from

about 170 to 290 psi for the range of variables tested in this study.

10. For smooth fibers, bond shear modulus (obtained from the slope of

the initial portion of the shear stress versus slip curve) varied from

about Ix106 to 9xl0 6 Ib/in3.

1.5 RECOMMENDATIONS FOR FUTURE WORK

Following is a list of recommendations for future research related to

bond in fiber reinforced cement composites. The list is by no means

exhaustive but reflects several areas that were touched upon in this

investigation.

* 1. There is need to better understand frictional decay with the extent of

slip and to model the mechanisms involved. A model based on

damage mechanics may be most approriate. This should help in

better predicting the descending branch of the load versus slip

* response in a typical pull-out test. The analytical work may be

coupled with an experimental investigation using, for instance, a

0
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comprehensive microscopic analysis of the history of debonding with

slip.

2. There is a need to better understand the mechanical component of

bond for a deformed or a hooked fiber and to model such behavior.

It is observed that the maximum contribution of the mechanical

component of bond occurs much after the maximum adhesion-friction

is developed. This contribution seems to significantly improve the

pull-out work up to the peak load.

3. The phenomenon of fiber entanglement or interlock found in highly

reinforced fiber cement composites such as SIFCON, should be more

thoroughly addressed both experimentally and analytically.

4. The models developed in Chapters VII and VIII in which a tensile
prism containing one fiber is analysed, assumed that the load is 0
applied to the fiber and transferred to the matrix. The reciprocal
problem should be addressed, that is, to apply the load to the matrix

and study the stress transfer to the fiber. The two solutions should
help in modeling the behavior of the composite before and after S
cracking. Such a study can also be coupled with a finite element

solution to check the validity of the model.

5. The effect of strain rate on the shape of the bond shear stress versus

slip curve should be investigated. Such a study would provide a
better understanding of the effects of strain rate on the mechanical
properties of the composite.

6. There is need to investigate the modulus of elasticity of the
composite and to develop a rational prediction model whereas the
bond shear stress versus slip relationship, which characterizes the

interface, is accounted for to the same extent as the properties of the
matrix and the fiber.

7. The theory developed in Chapter V regarding the pull-out process

should be used in a fracture mechanics framework to predict the
post-cracking response of the composite. The shear stress versus S

slip relationship can be suitably integrated with the constant crack

• l |
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opening angle assumption to predict the onset of fracture and the

fracture energy.
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CHAPTER II

BOND SHEAR STRESS - SLIP RELATIONSHIP

0 2.1 GENERAL

The general relationship between local bond stress and slip for dif-

ferent types of tension reinforcement is illustrated in Fig. 2. 1. All types of
• reinforcement display a similar behavior up to the point where the adhesion

breaks (ascending branch). Plain bars will slide out; the failure is hence of

a sliding nature. As for ribbed bars, further loading mobilizes the

mechanical interlocking between the lugs and the concrete. The effects of

* lug spacing and depth on the stress-slip relationship will be discussed

farther ahead. This, in effect, creates circumferential tensile cracks in the

surrounding concrete (see Fig. 2.2), and thus reduces the stiffness of the

bond stress-slip relationship (i.e. the slope of the ascending portion of the

* curve becomes smaller). The existence of these internal cracks has been

proven experimentlally by Goto [181. For unconfined concrete or in the

case of a small volume of surrounding concrete, the internal cracks
propagate to the surface resulting in bond failure. On the other hand, if the

* concrete is well confined, the load can be increased beyond the creation of

these cracks, up to a point where the maximum bond stress (i.e. the bond

strength) is reached. At this stage, shear cracks develop as shown in Fig.
2.3. After the maximum bond stress is reached, further slip causes a

* reduction in the bond resistance until bond stresses all become of a fric-

tional nature. The friction that takes place is actually between the rough

concrete at the cylindrical surface where the shear cracks developed [141.

It is worth noting that there is a general tendency to believe that the

shear stress-slip relationship is of a local nature, meaning that this rela-

-10-
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Fig. 2. 1 - General relationship between bond stress and slip for

different types of tension reinforcement.
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Fig. 2.2 - internal bond cracks and forces acting on concrete (From
Ref. 18).
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tionship is not unique, but depends instead on the location

[1, 16,23,25,45,551. However, Edwards and Yannopoulos [121 stated that

* 'the maximum bond stress value would not vary with distance from a

loaded end, or a crack face, in a concrete member." Mirza and Houde [371

reported similar findings.

2.2 MODELS AND STUDIES OF STRESS-SLIP RELATIONSHIPS

Extensive experimental studies were undertaken in recent years to

determine the characteristic behavior of local bond stress-slip relationship
0 of deformed reinforcing steel bars [11,14,37,45,461, and several mathe-

matical models were proposed. However, depending on the case, the

characteristic behavior of the bond stress-slip relationship shows signifi-

cant scatter. This scatter can be illustrated in Fig. 2.4.

Nilson [451 carried out tests on 6x6x18 in. prism specimens to study

the local bond stress-slip relationship on concrete-steel interfaces. #8 bars

were used in these tests. All specimens were subjected to concentric

* tension forces acting on both ends of the embedded bar. As was mentioned

earlier, it was concluded from this study that the bond stress-slip

relationship varies along the embedment length, and is thus not unique.

The following equations were suggested by Nilson to relate the bond stress

• to the slip and the distance from the loaded end:

'Ex  3100 (1.43 c + 1.5) Sx -JTc (2.1)

: (1.43 c + 1.5) -'rFC (2.2)

where 'rx is the local bond stress in psi, c and Sx represent the distance

from the loaded end (in.) and the slip respectively, and fc is the concrete

compressive strength in psi. The slip is the relative displacement between

*O the concrete and the steel bar.

Comparisons between Eq. 2. 1 and the experimental results for dif-

ferent values of c are shown in Fig. 2.5.

0

0
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Mirza and Houde [37] tested 62 pull-out tension specimens rein-
forced with steel bars ranging from #4 to #8. Different concrete strengths

and different size prisms were studied. The authors found out that the bond
stress is independent of the distance from the loaded end. This is in
contradiction with what was stated by Nilson. Mirza and Houde suggested
the following expression for the bond stress-slip relationship:

-x l.95x10 6 Sx - 2.35x10 9 Sx2 + 1.39x10 1 2 S3 - 0.33x1015 Sx4

(2.3)

where t x is the local bond stress in psi, normalized to V (f'c = 5000 psi)
and S x is the local slip in inches. Concrete strengths other than 5000 psi

can be accounted for by multiplying the right hand side of Eq. 2.3 by

5000"

Recently, an extensive study was conducted by Eligehausen, Popov

and Bertero [14] to determine the local bond stress-slip relationship tinder
generalized excitations. Pull-out tests were conducted on concrete speci-
mens with small embedment lengths (5 times the bar diameter). Different
bar diameters db (#6 to #10) and different concrete strengths (4000 to 8000

psi) were used. In addition, the effect of bar spacing and the amount of
confining reinforcement, to simulate the conditions prevailing in an actual
joint, were also studied. The authors observed that confinement helps
restrain the propagation of the secondary internal tensile cracks around the
bar lugs, and thus increase the bond strength significantly. Specimens with
no confining reinforcement developed a peak bond stress of about 6 MPa as
opposed to the 13.5 MPa developed in confined specimens. It was also
observed that the bar diameter has little influence on the maximum bond
strength. Moreover, it was observed that for a given slip, the bond
strength increases linearly with -"Tr. The following expression was
suggested for the ascending portion of the local bond stress-slip curve:

- tS )4 (2.4)

0
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where

= local bond stress

Tmax = maximum bond strength

Sx  = local slip

S = local slip corresponding to "tmax.

The average observed values [141 of tmax and S1 were respectively

13.5 MPa and 1.0 mm for a 30 MPa concrete strength. Typical plots of the

bond stress-slip relationship for the monotonic loading are shown in Fig.

2.6.

Stocker and Sozen [581 carried out pull-out tests on 1/2" prestressing 0
strands with short embedment length (0.5-2 in.) anid different concrete

strengths. The average value of maximum bond strength in their study was

about 0.4 ksi for a 2500 psi concrete strength, 0.56 ksi for 6000 psi

concrete and 0.58 ksi for a 7500 psi concrete. 0

Edward and Picard [11] tested a total of 12 specimens to study the
bond characteristics of 1/2" prestressing strands. The embedment length of

the strands was 1.5" and the average concrete cube strength of all the •

specimens was 9640 psi. It was observed that the average value of the

maximum bond strength decreases with increasing concrete cover. This

observation was attributed to the settlement of the concrete under the strand

which was held in a horizontal position during casting. They concluded 0

that the bond-slip relationship for strands is almost linear up to the peak

bond stress and remains constant and equal to its maximum value there-

after, provided no longitudinal cracks appear in the specimens. The
maximum bond stress in this test varied between 0.33 and 0.67 ksi, and the

stiffness of the bond stress-slip curve varied between 665 and 879 k/in 3 .

Typical plots of bond stress-slip relationships in their test is shown in Fig.

2.7.

• I I
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2.3 EXPERIMENTAL APPROACH: STRESS-SLIP THROUGH STRAIN

MEASUREMENT

Another approach to the problem is the experimental way, which is
easy conceptually, but rather difficult to perform, especially in the case of
fiber reinforcement. It was used by Nilson [451 to obtain stress-slip

curves.

The experimental determination of the force-displacement relation-
ship in bond has two components: the bond stress must be found, and the
slip between steel and concrete must be measured. Since both these quan-

tities vary with distance along the bar at any load, it is desirable to estab-

lish each as a continuous function of distance.

The average unit bond stress, expressed in units of force per unit
interfacial area, is an appropriate parameter. This stress is given by:

= T (2.5)

Vdx

As dfs (2.6)

y dx

Eq. (2.6) can be easily restated in terms of the tensile strain Es in the

steel:

U As Es dEs(27u - 5 ~E (2.7)
4tdx

where:

= average bond stress at location considered

dT = change in bar tension in length dx

* V = bar perimeter

0"
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As  = bar cross-sectional area

df s  = change in steel tensile stress in length dx 0

Es  = modulus of elasticity of steel

Bond stress at any location along the interface, at any load, is thus

proportional to the slope of the steel strain distribution curve at that point
and that load. Eq. 2.7 assumes that steel is still in the elastic range. In
reinforced concrete, this fact is usually true because reinforced concrete
members are usually designed in such a way that under working loads, the

stress level in steel does not exceed 50% of yield. This assumption is also
sound in the case of steel fiber reinforced concrete since it has been
established that steel fibers usually pull-out before they yield.

To get the shear stress-slip relationship using this method, all is

needed is the strain distribution for both steel and concrete along the steel,

be it a reinforcing bar or a fiber. Indeed, bond slip can be found indirectly
as the difference between the steel displacement and that of concrete, at any
location on the interface, with respect to some transverse reference plane.
In case of reinforced concrete, this plane should be the median of the
portion of the bar between two primary cracks. In the case of fiber
reinforced concrete, if the fiber is not crossed by any crack, the reference
plane would simply be the median of the fiber, otherwise this plane would

be the plane of the crack. The displacement function for the concrete and

the steel may be obtained by integration of the strain functions.

Nilson [451 obtained the steel strain distribution as follows. The •
reinforcing bar was sawed longitudinally on a diametral plane, and slots
milled along the centerline of each cut surface. Electric resistance gages
were then attached at close intervals along the bottom of each slot, after
which the two halves of the bar were rejoined using epoxy cement. As for 0

the concrete, he used electric resistance strain gages cemented between two

thin polyester resin blocks. The outer surface of the resin is coated with

coarse grit material to provide good bonding with the concrete. Such gages
were embedded in test specimens at intervals along the interface, and 1/2 -

in. from it.
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In Fig. 2.8, the variation of steel strain is plotted as a function of

distance, and so is the concrete strain. Integration of each strain function

along the bar length provides the displacement of the steel and the concrete,
measured from the reference plane.

With the bond stress calculated from the slope of the steel strain

curve using Eq. 2.7, and the bond slip found by numerical integration, one

point on the bond stress-slip curve is established. By increasing the load

incrementally, subsequent points may be obtained for larger bond stress

and slip, hence defining the complete curve at a given location.

0
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CHAPTER III

EXISTING MODELS FOR BOND SHEAR STRESS DISTRIBUTION

3.1 GENERALITIES

In composite materials, the study of bond is an unavoidable step to-

wards the understanding of the way forces are transmitted from the matrix

to the reinforcement. The idea of reinforcing cementitious matrices stems

from this concept. Since these matrices fail at much lower tensile strains

than steel does, once the matrix (concrete or mortar) cracks, the tension

that cannot be taken by the matrix is transmitted to the reinforcement

(reinforcing bars, prestressed strands or discontinuous fibers). If there

was no bond between the matrix and the reinforcement, i.e. a condition of

free frictionless "lippage, then the composite would fail as soon as the

matrix cracks, and the reinforcement would not have taken any share of the

•0 tension. Bond is needed for tension, as well as for compression, although

the force transmission and the mode of failure are different for the two

cases.

In the case of fiber-reinforced concrete, bond is important in many

respects. ,There is hardly any formula giving the tensile strength of a fiber-

reinforced composite that does not contain a bond term. The bond is also

important for the understanding of strain rate effects on the tensile

properties of fiber reinforced concrete. This bond is usually the average

bond stress along the interface which cannot be determined accurately

unless the bond stress distribution along the interface is known. Various

approaches have been used by researchers to determine bond stress

distributions. In this chapter, three different analytical methods used in the

determination of the bond stress distribution along reinforcing bars in rein-

-24-
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forced concrete are reviewed. §3.5 briefly discusses a new approach to the
bond action between concrete and a typical deformed steel bar. All

methods presented are briefly compared to each other in §3.6 with regards 0

to accuracy, practicality, and simplicity.

Usually, it is the average shear stress along the interface rather than
the stress distribution that is needed. However, when the shear stress 0

distribution along the interface is known, a simple integration
(mathematical or numerical) gives the value of the average bond. The

following three sections outline three different methods for finding the

stress distribution along an interface. 0

3.2 ANALYTICAL METHOD BASED ON ASSUMED BOND SHEAR

STRESS-SLIP RELATIONSHIP
0

The idea behind this method is simple conceptually, and the mathe-

matics involved are not particularly cumbersome. This method requires an
analytical relationship between the bond shear stress and the slip. It also
assumes that the bond shear stress-slip relationship is unique. While this 0
assumption may not be exact, as was pointed out earlier in Chap. 2, the
fact remains, however, that this method is still valid, especially when the
shear stress distribution is used for averaging the bond, as long as an

average stress-slip relationship is used. The detailed mathematical aspects 0
of this method as applied to fiber-reinforced cementitious composites are

developed in Chap. 5. The essence of this method, as well as the under-
lying rationale are briefly described next.

0
It is first noted that the rate of change of the slip along the rein-

forcement-matrix interface is the difference between the strain in the rein-

forcement and the strain in the matrix. This same relationship can be

expressed in function of the stresses in the reinforcement and the matrix,
assuming Hooke's law applies for both of them. The stress in the matrix

can be related to the stress in the reinforcement in a linear manner, so that
the rate of change of the slip with distance can be expressed as a function

of the stress in the reinforcement. The second derivative of the slip with
respect to distance is, therefore, proportional to the rate of change of the

0
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stress in the reinforcement with distance, which is directly related to the
shearing stress through the bond-slip ('t-S) relationship assumed known.
Using the ('t-S) relationship, the problem is reduced to a second degree

differential equation, the solution of which provides the slip distribution
with distance. This slip distribution, along with the bond shearing stress-

slip relationship gives the bond shear stress distribution.

This method does not involve any mathematical approximations so

long as the differential equation obtained can be analytically solved, which

is not necessarily true. Furthermore, this approach yields an analytical ex-
pression for the bond stress, rather than discrete values at select points

along the interface. The shear stresses at different points along the
interface can be obtained by plugging the value of the distance from the

point of interest to the reference point into the expression of the shear

stress.

The above described method has at least one disadvantage, in that it

cannot accommodate bond shear stress-slip relationships that cannot be
expressed analytically. Therefore, (It-S) relationships expressed graphi-

cally are to be modeled mathematically first, before this method can be
applied. Such a modeling will inevitably introduce an error, the effect of
which might be significant depending on the level of simplification

adopted. It is worth mentioning that this method has been widely used.

3.3 NUMERICAL METHOD BASED ON EXPERIMENTALLY DERIVED

BOND STRESS-SLIP RELATIONSHIP

0 Tassios and Yannopoulos [621 derived a computerized method ca-

pable of determining in a direct and analytical way the stress distributions

in the reinforcement, in the matrix, as well as the bond stress distribution
along the interface. It can also determine all the corresponding deformation

characteristics. Examples of applications regarding pull-out tests under

monotonic loading, axially loaded elements under both monotonic and

cyclic loading, and flexural members under reversible loading were given.

* Fig. 3.1 shows the interrelationship between the stress in the

reinforcement, the stress in the matrix, the shearing stress and the slip.

, 0! I
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Fig. 3. 1 Schematic distributions of stresses and local slip along

cracked element (Reproduced from Ref. 62).
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For the axially loaded element shown in Fig. 3.2, the following el-

ementary equations may be derived:

A s  =AX (3.1)

As As 
(3.2)

AS = - EC) Ax (3.3)

where the subscripts s and c refer to the steel reinforcement and the con-
crete respectively, a is the normal stress, E is the strain, A is the area, S is
the slip, t is the bond stress along the interface, and xV is the reinforcement

perimeter.

It is assumed here that there is a unique relationship between local
bond t and local slip S at every point of a bar inserted in a mass of
concrete. An axially tensioned reinforced concrete element after cracking is
considered.

A typical pullout element (Fig. 3.3) is studied analytically by di-
viding its length into a number of parts of sufficiently small length Ax, and

applying the basic relationships of Eqs. 3.1 - 3.3 at each consecutive

section. In the case of axially loaded elements, only half of their length
needs to be considered because of symmetry.

The following algorithm is applied to compute the values of a s , o c,
S, and r at section i+l, knowing the corresponding values at section i and
assuming that 't is uniformly distributed over the elementary length Ax:

'Usi+l = -si " 4  , i Ax (3.4)

=c-i+! =  (0ci+ 1 - si ) A  (3.5)Ac
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Fig. 3.2 Stresses and strains on a finite length of a reinforced 0
concrete element (Reproduced from Ref. 62).
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Fig. 3.3 - Typical pull-out element (Reproduced from Ref. 62).
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With Es,i+1 and Es,i corresponding to (ys,i+! and ys,i respectively in

the s - s curve, and £c,i+1 and Fc,i corresponding to arci+l and 5ci re-

spectively in the ac - C curve:
Ax A

Si+ = Si (Es,i+l + Es,i ) "- + (Ec,i+l + £c,i ) X (3.6)

where ti+l corresponds to Si+I in the (r S ) curve.

The boundary conditions for the pullout element are shown in Fig.

3.3. Using the above algorithms and boundary conditions, the values of

FsJ, (c,, Si, and Ti can be computed at each section for any given back

slip S b , starting from the back face (S l = Sb) and ending at the front one.

As can be seen from the above description, the numerical method is

flexible, easy, and short if a computer is used. Furthermore, it can accom-

modate all kinds of stress-slip relationships, no matter how complicated

they are, without modeling anything. Finally, the error introduced can he

reduced by reducing the value of Ax. The above method is very powerful

and useful, and can accommodate more complex situations, such as cyclic

loading.

The main shortcoming in this method is the back slip Sb that cannot

be determined. The authors did not suggest any way to determine the value

of S b . Another possible disadvantage of this method is that the shear

stress along the interface (or axial stress in the reinforcement or matrix)

cannot be found at any point, but only at specific points or "stations".

This means that the bond stress curve obtained is only defined by discrete

points, joined by straight lines, or perhaps by a best fit curve. Another

source of error is that the integration needed to obtain the average bond

stress, has to be done numerically. The error can be ceduced by including

more stations per interface.

3.4 ANALYTICAL METHOD BASED ON ASSUMED BOND STRESS

DISTRIBUTION

0 =m
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surement of local bond stress and local slip along a stressed reinforcing bar

f a tensicn member i' difficult and very sensitive to experimertal error. 0

Moreover, the relationship between bond stress and local slip has been

observed to vary from section to section [45]. The authors of this work

were basically trying to find the shear stress distribution at the interface of

the reinforcing bar and the surrounding concrete, as well as the normal 0

stresses in the bar and the concrete for the bar shown in Fig. 3.4. They

introduced a differential equation relating the second derivative of the local

slip to the local bond stress, along with five boundary conditions, namely

that: 0
s

1. Atx= -, Sx =0.

dSx
2. At x = dt x -.

dx
3. Atx=L t , dx=0

4. Atx=0 dIx -0.
dx 2  0

s d2 S
5. At x- dx 2 =0.

where S x is the local slip, s is the length of the specimen, e. is the strain in

the steel, and Lt is the transfer length, defined as the embedment length

required to satisfy the condition that at x = Lt, the strains in the steel and

the concrete are equal to each other.

The authors then noted that if a stress-slip relationship is to be as-

sumed, and if it is assumed that the local bond stress is linearly dependent

on the local slip, then the resulting solution would be of the form:

S x  = A ekx + B e- kx (3.7)

where A and B are constants to be determined from the boundary condi-

tions, and k is a constant dependent on the material properties and cross-

sectional dimensions.

! 0
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Fig. 3. 4 - Load ,strain, slip, and bond stress distribution (From Ref.
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The problem lies in the fact that Eq. 3.7 has only two unknown

coefficients, whereas five boundary conditions are to be satisfied simulta-

neously. Two observations were made by Somayaji and Shah namely that :

I) the relationship between the local bond stress and the local slip is not

unique, 2) it is experimentally difficult to obtain a precise relationship

between the local bond stress and local slip that can be mathematically

modeled. These problems led them to the following alternative approach.

Instead of assuiiii, a relationship between the bond stress and the

slip, an exponential bond stress distribution is assumed leading to the

following:

d2 Sx
d 2  = A ex + B e-X + C (3.8)dx 2

Integrating the above equation twice leads to the following expres-

sion for the local slip S.:

S Aex + Be-x + C--1--+ Dx + E (3.9)

where the five coefficients A, B, C, D, and E can be found from the five

boundary conditions mentioned earlier. After determining the coefficients,

one can evaluate the strains in steel and concrete at any section by succes-

sively differentiating Eq. 3.9, and using the relationships between the

strains in the reinforcement and the matrix, and the local slip. In solving a

typical pull-out problem, the five coefficients were found to depend on the

transfer length Lt , as well as the crack spacing or the segment length s. It

was also noted that in the course of the development of this theory, a linear

relationship between the transfer length and transfer load was assumed,

which assumption is not unreasonable.

This approach is unique, and Somayaji and Shah are the only in-

vestigators to have adopted it. The authors believe that the method can be

substantially improved if Eq. 3.8 is replaced by:

d 2Sx = A' ekx + B' e - kx (3.10)

dx
2
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Then, by integrating twice, the following expression for the local

slip is obtained:

S x  = A ekx + B e - k x + C x + D (3.11)

where A = A' / k 2 and B = B' / k 2 .

k in these expressions is a function of the cross-section, and should

in fact reflect the stress-slip relationship.

This method overall is simple and easy to implement. However, it

lacks power and accuracy. As can be noted, the expressions obtained de-

pend only on the boundary conditions. In other words, the shear stress

distribution obtained using this method is independent of the stress-slip

relationship, meaning that the stresses in the steel and the concrete, as well

as the shear distribution along the interface are independent of the bond

properties of the interface. It is true that because of the analytical nature of

this method, the shear stress can be found "exactly" at every point, but

again, this accuracy is in contradiction with the rough assumption made as

a starting point that the slip distribution satisfies Eq. 3.9. Finally it should

be mentioned that Somayaji and Shah were able to derive a stress-slip curve

from the assumption made in Eq. 3.9.

3.5 YANKELEVSKY'S THEORITICAL APPROACH

So far, all the methods outlined in this chapter have in common that

the bond shear stress distribution is dictated by the relationship between

the stress and the slip. Of course, the stress distribution and the stress-

slip curve are interrelated in that one can always be derived from the other.

However, assuming one in order to obtain the other is not the only valid

approach. Indeed, Yankelevsky [65] adopted a completely different path to

study the bond between a deformed steel reinforcing bar and the

surrounding concrete.

Yankelevsky's work was centered on the problem of axially loaded

* specimens, where a single reinforcing deformed bar is encased concentri-

cally in a long concrete cylinder with the bar ends exposed. Goto [18]
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performed an interesting series of tests in which such specimens were
loaded in tension and found that shortly after primary lateral cracks
formed, internal cracking began (Fig. 2.2). These numerous cracks form 0
cones with their apexes near bar lugs. The angle of internal cracking is
generally within the range of 45" to 80" to the bar axis and many crack
angles reach 60". These cracks were found to start at a steel stress level of
about 100 MPa (14 ksi).

The model in question, which is closely related to Goto's experi-
mental observations, represents the interaction between uncracked concrete
and a deformed bar through a mechanical system; conceivably it could be
modified to apply to cracked concrete in between two cracks.

Fig. 3.5 shows a concrete cylinder having a length L and a diameter
D, in which a deformed steel bar is centrally located. A tensile force F o is
applied to the steel bar ends. A differential element dx of the steel bar is
located to the left of the axis of symmetry. The applied tensile force pulls
to the left all the segments located to the left of the axis of symmetry. It is
assumed that the surrounding concrete resists the pull by inclined
compressive forces dC (Fig. 3.6), thus reducing the axial force F in the bar

along the x coordinate.

The structural model through which the resisting force dC is trans-
ferred to the concrete is shown in Fig. 3.6. Concrete segments in com-
pression AB and A'B' are inclined to the steel bar segment at angle cc and
react on the rod by a force dC per unit length in the hoop direction. The
circumference BB' is the locus of segment centroids of a typical disc EE'
(Fig. 3.6). The centroid B (or B') in Fig. 3.6 is the location of the resul- 0
tant tensile force to equally distributed tensile stress in concrete in the axial
direction. The compressive force dC' per unit length of the circumference
BB' in the inclined segment AB (Fig. 3.6) at B is in equilibrium with a
radial force dN per unit length of the circumference BB' in the disc EE' and 0
with the longitudinal tensile force per unit length dQ. By such a
mechanism, the tensile force F in the steel bar is reduced at a rate of dF/dx
and is increased at an equal rate of dT/dx in the concrete. T is the total
tensile force and equal to 21r r Q, where the centroid location r (Fig. 3.6) is 0

given by:
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Fig. 3.5 Schematic representation of Yankelevsky' s specimen
(Reproduced from Ref. 65).
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Fig. 3.6 -Structural model of Yankelevsky (Reproduced from Ref. 65).
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D 1 + d + d2

r + Dd _ (3.12)
D

For the common cases where d,,D, r can be taken as D / 3.

From this point, static equilibrium and compatibility are used to

relate the forces together. A differential equation in F (the axial force in the

steel) is obtained and solved. The solution obtained was:
nA s

FC1 e~ x + C2 e-x + A+ nA Fo (3.13)

where n is the modulus ratio (n = Es / Ec) and 03 is a constant dependent on

the modulus of elasticity of steel, on that of concrete, as well as the

dimensions of the specimen.

It is found that the third term in the right hand side of Eq. 3.6 (say

F s ) is the portion of the total force Fo which is carried by the steel bar ac-

cording to its relative stiffness, the other portion (say F c = Fo - F s ) being 0

carried by the concrete. Strain in the steel bar at X=O (Fig. 3.5) has its

highest value, and strain in the concrete there is zero. As distance from bar

end increases, the strain in the concrete increases and that in the steel

decreases. At a distance I from the bar end, the strains in the concrete and 0

steel become equal. In that section, the force in the steel is F s , whereas the

force in the concrete is T = Fc, and bond stresses approach zero.

The two constants C1 and C2 are found from the following boundary

conditions:

(1) At X = 0, F = Fo  (3.14)

(2) At X = , the shear stress is zero, hence: 0

dF 0 (3.15)

Using these two conditions, Eq. 3.13 becomes: S

I •
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F = Fc e. eX + 1 e4 x + Fs  (3.16)

For high values values of I (practically for 131 > 4), the first term has

a negligible contribution and Eq. 3.16 simply becomes

F = Fc e 3 x + F s  (3. 17)

From Eq. 3. 17, and using the fact thaL F. = F + T = Fs + F c , :t e

following is found:
1

fs = - ( F0 - F c [1 - e-Px] (3. 18)
fS A s;

P3 AC F. x (3. 19)
it d Ac +nA s Fe3.

where f. is the stress in the steel, and T is the shearing stress at the inter-

face.

Yankelevsky verified these expressions againt results of tests run at
Berkeley (Fig. 3.7), and the results compared very well with his theory.

Indeed, this approac', is powerful, and the assumptions made are sound.

However, the approach is limited to the uncracked concrete case.

3.6 GENERAL OVERVIEW

As far as accuracy is concerned, the new theory presented in §3.5

seems to be the most accurate, without being inconsistent. The analytical
method presented in §3.2 is apparently exact; it is, however, based on an

analytical stress-slip relationship that is probably not very accurate, nor is
it always available. This fact introduces an inconsistency between the
mathematical rigidity of the derivation of the bond distribution, and the
inaccuracy of the stress-slip relationship, on which the results are based.

The numerical method presented in §3.3 is the most powerful, while
practical and realistic, for it can accommodate a wide variety of cases,
including a graphical stress-slip relationship (thus no mathematical model
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is needed) and a cyclic case of loading. The assumed bond distribution

method of §3.4 is not realistic, and lacks consistency and soundness.

As far as practicality and ease of use is concerned, the new theo-

retical method in §3.5 is the easiest to use since it involves simple math-

ematical expressions.

The authors have extended this new approach to the case of fiber-

reinforced cementitious composites (see Chap. 8) as one of two different

methods of predicting the interfacial bond distribution in FRC.

3.7 FACTORS AFFECTING BOND IN REINFORCED CONCRETE

3.7.1 General

As was emphasized earlier, it is very important to understand bond to

be able to explain the behavior of composites, especially under tensile type

loading. The composites in question can be anything typically represented

by a weak brittle matrix and a stronger ductile reinforcement. While the

main focus of this study pertains primarily to bond in fiber-reinforced

cementitious composites, bond in reinforced concrete and prestressed

concrete cannot be ignored, and ought to be addressed, if briefly. While it

is true that reinforced and prestressed concrete and fiber reinforced con-

* crete fall under the category of cementitious composites, they display to a

large extent a different behavior, notably in the case of bond mechanisms.

Factors affecting bond in reinforced concrete are numerous. Some of

* them are obvious, while others are harder to comprehend. The problem of

bond in reinforced concrete is far from being fully understood, even less so

for the case of fiber-reinforced composites. Moreover, there is not always

a consensus between researchers as to what factors affect bond and in what

* way. In this work, only three factors affecting bond will be discussed,

even though more factors are recognized. Those three factors were chosen

because of their importance, and because they have been addressed in the

past. They are: the texture of the steel reinforcement (plain versus de-

* formed), the concrete cover, and the confinement. One section will be

devoted to each, and finally, §3.7.5 will summarize the conclusions.

0
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3.7.2 Texture of The Steel Reinforcement

This is the most important and the most significant factor affecting

bond properties of reinforced concrete, but also of other cementitious

composites. One can sense the difference between smooth and deformed

reinforcing bars in bond. It is clear that deformed bars will display a better 0

bond performance than smooth (plain) bars. It is also important to

understand that the behavior of deformed bars is completely different from

that of plain bars.

The classical concept of bond is that it consists of adhesion between

the reinforcement and the surrounding concrete and bond failure is caused

by the failure of this adhesion. Traditional design methods and code rules

concerning bond and anchorage of reinforcement are based upon this

concept and result in provisions for allowable bond stress values or

corresponding development lengths necessary for developing the full

design strength in the bars.

This concept is originally based on bond tests, usually pull-out tests,

with smooth reinforcing bars, and in such cases the concept corresponds

relatively well to the real function. For deformed bars, tests of this kind

and this concept of bond are however quite wrong, especially for bond

failure in an ordinary beam case where the bar is placed near a surface with

normal concrete cover. In this case the failure is preceded and finally

caused by longitudinal cracking due to the compressive forces radiating out
with a certain inclination a from the surface deformation lugs (see Fig.

3.8). These forces in turn produce tensile stresses in the surrounding

concrete and cause successive splitting cracks following some critical

splitting surface line between the reinforcing bars and the surface of the

concrete member. The final failure takes place when these cracks have

propagated all along the anchorage zone along the bar. Depending on the

arrangement of the reinforcement and its location relative to the concrete

surface, the covering layer, etc..., these splitting lines can form different

patterns (Fig. 3.9). This concept of splitting line was introduced by

Losberg and Olson [30] who found that the bond force is closely related to

u I I I I0
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Fig. 3.9 - Splitting line patterns in some cases of reinforcement

arrangen, t (From Ref. 30).
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Fig. 3. 10 - Single rib and single concrete tests (From Ref. 31).
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the length u of the splitting line (Fig. 3.9) and the concrete tensile strength
(splitting strength) fct.

In general, bond can be thought of as the shearing stress or force

between a bar and the surrounding concrete. Bond is made up of three

components:

(a) Chemical adhesion

(b) Friction

(c) Mechanical interlock between concrete and steel 0

Bond between concrete and plain bars consists primarily of the first

two elements, although there is some mechanical interfacial friction due to

the roughness of the bar surface. Deformed bars, however, depend fore- 0
mostly on mechanical interlocking for superior bond properties. Never-

theless, friction and chemical adhesion are not necessarily negligible in the

case of deformed bars, but are somewhat secondary.

To obtain a clear understanding of the bond of a deformed bar in

concrete, the bond forces as well as the slip will be examined. Unless the

strain in the concrete and the steel is the same and constant over a length, a

deformed bar attempts to move or slip in relation to the surrounding

concrete. Initially, chemical adhesion combined with mechanical interac-

tion prevents significant slippage. After adhesion is destroyed, and slip

occurs, the ribs of a bar restrain this movement by bearing against the

concrete between the ribs; this concrete will be called the concrete key

(Fig. 3. 10). Friction, which would occur after slip is induced in the case

of plain bars, does not occur here because of the presence of the ribs.

Slip of a deformed bar can oc-,ir in two ways:
0

(a) the ribs can push the concrete away from the bar (wedging action)

(b) the ribs can crush the concrete

It was determined experimentally from pull-out tests on bars with 0

only a single concrete key (Fig. 3. 10) that the movement of the ribs is

0
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about the same for all ribs with face angles greater than 40" (the face angle
of ribs is measured with respect to the bar axis). These tests included

specimens with ribs having face angles of 90" (and even 105') in which
case the rib cannot push the concrete outward, hence preventing any
wedging action). The friction between the rib face and the concrete is

evidently sufficient to prevent relative movement at the interface when face

angles are larger than about 40 to 45". It follows that slip is due almost
entirely to the crushing of the porous concrete paste (mortar) in front of the
ribs if the rib face angles are larger than about 40". It is understandable
that crushing of the concrete does occur, since the average bearing pressure

exerted by these ribs is very large.

Bars with ribs having face angles less than about 30" exhibit
markedly different load-slip relationships (Fig. 3. 10). Here the friction
bteen the -ib face and the concrete is not sufficient to prevent relative
movement. Thus, slip is mainly due to the relative movement between the

concrete and steel along the face of the rib, and, to a lesser extent, to some

crushing of the mortar.

Slip caused by relative movement (in addition Lo that caused by
crushing) also occurs when the frictional properties of the rib face are re-
duced by grease. In other words, bars with ribs having face angles greater
than about 45, but where the friction is impaired, exhibit load-slip curves
which are similar to that for a rib with flat rib face angle. The extent to
which slip properties are affected by grease depends nevertheless on the

face angle; ribs with flatter face angles are understandably more affected by

poor frictional properties.

For the more common case of good frictional properties and a rib
face angle greater than 40, slip occurs by progressive crushing of the
concrete paste structure in front of the rib. This does not appear to pro-
duce significant wedging action until considerable crushing has occured, at
which time a wedge of crushed concrete (compacted powder) becomes
lodged in front of the rib and moves along with it. This, in effect, pro-

duces a rib with a face angle of 30 to 40". Sut,.h w gdb u t" CuiLApa.;Led
concrete powder have been observed in front of ribs that had carried high

bond forces; Rehm [531 states that crushing extends in front of the rib for a
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length of 5 to 7 times the height of the rib, although the compacted powder

that moves with the rib extends at most 2 times the height of the rib.

It is interesting to note (Fig. 3.11) that the bond modulus (slope of

bond-slip curve) upon reloading is considerably higher than that displayed

initially. This was observed by Rehm [53]. This behavior can best be

explained by the fact that during the second loading, the rib bears against a
compacted nonporous crushed concrete, as opposed to the porous, intact

concrete during the initial loading.

It should be pointed out here that it is not possible to produce ex-

tensive crushing and wedge action in front of every rib without having

transverse and longitudinal cracking, caused by the forces produced by the

ribs bearing on the concrete.

As can be deduced by what preceded, the bond behavior of deformed

bars is in essence very different from that of smooth bars, and surface
deformations improve the bond performance of bars. Also, it is the angle

of the rib, rather than its size, that dictates the general behavior of
deformed bars. Many researchers were thus misled all along when they 0

assumed that a deformed bar with closely spaced lugs has a higher bond

strength than a similar one with a larger rib spacing.

3.7.3 Concrete Cover Effect

Another important factor affecting bond in reinforced concrete is the
thickness of concrete binding the steel bar. Conceptually, it is easy to

visualize how the cover makes a difference in the bond strength and prop- 0

erties of the interface. The concrete surrounding a steel bar in tension is

subjected to compressive stresses. When the concrete cover is very small

for instance, then the concrete might fail under the compressive forces that
are acting on it. However, if the concrete cover is very large, say in-

finitely large, then this does not mean that the bond at the interface of the

concrete and the steel is infinitely strong.

The problem has hence to be viewed in the following manner. If the 0
cover is too small, then the concrete governs the bond, and the failure of
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the interface is that of the -oncrete. Beyond a certain value for the cover,

the bond is dictated by the strength of the adhesion at the interface. In

other words, even though the concrete surrounding the steel will remain 0

intact, the bond between the concrete and the steel will eventually fail. No

discussion of this threshold value can be found in the available literature on

bond, hence the weakness of most bond theories.

Orangun, Jirsa, and Breen [461 derived the following equation fror

a non-linear regression analysis of test data:

-nax _ 1 2 + 3.0 _._- + 50 -- (3.20)
4.Tj% U b L

where "tmax is the bond stress capacity (psi), c is the smallest concreL,

cover or half the bar spacing, db is the bar diameter, L is the embedment
length, and "' c is the concrete cylinder strength (psi).

The major flaw of this equation is that it predicts an infinite bond

strength for a steel reinforcing bar embedded in a very huge matrix of con-

crete (since the cover then tends to infinity). It also predicts an infinitely
large bond strength for small embedment lengths.

Kemp and Wilhelm [28] presented the following equation:

= ,, -- (2.64 + 2.37 (3.21)

where 'tbv is the average bond stress at first visible crack (psi), c is the

concrete cover (in), db is the bar diameter (in), and f'c is the concrete

compressive strength (psi).

This concept, directly relating the bond strength (or average bond) to

the concrete cover lacks in that it only works for small covers. For larger

covers, it is the adhesion between the steel and the concrete that governs

the strength of the interface.

In conclusion, the concrete cover influences bond in a sense that it
needs to be large enough not to create problems at the interface (namely

causing a splitting mode of failure). However, the equations presented in

• , , I I0
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this section cannot be used for all cases, but need to be modified to ac-

commodate the fact that beyond a certain value, concrete cover has hardly

any effect on bond.

3.7.4 Effect of Confinement on Bond

The confinement effect can be not so different from that of the

concrete cover. When an external pressure is applied to the concrete sur-

rounding the steel subjected to tension, the compressive capacity of the

concrete increases by up to 20% of its original value, which makes the

interface stronger in resisting splitting. In this respect, the effect of con-

finement is exactly the same as that of the concrete cover.

However, the confinement reinforces the bond capacity of the inter-

face no matter what the concrete cover is, even when the mode of failure is

not of the splitting type. Indeed, after the adhesion between the concrete

and the steel breaks, frictional stresses develop along the interface. These

stresses are directly related to the normal stresses acting on the steel. This
means that for the same slip, more frictional stresses would be needed to

develop along the interface, which implies that the tensile capacity of the

system is increased.

Finally, it can be stated that confinement of the concrete around the

steel subjected to tension is helpful in increasing the bond capacity of the
interface and the tensile strength of the system. Such a confinement is

usually provided by tranverse steel reinforcement which, by preventing the

concrete from expanding, induces a confining pressure.

S

S



CHAPTER IV

OVERVIEW OF BOND IN FIBER-REINFORCED CONCRETE

4.1 GENERAL

Bond in fiber-reinforced concrete is a discipline in itself. However,

it is very useful to look at bond in reinforced concrete before attempting to

solve the bond problem with fibers since fibers feature a completely

different behavior than conventional reinforcement.

The main difference between fiber-reinforced concrete and

conventional reinforced concrete lies in the fact that, unlike reinforcing

bars, fibers are not continuous. Moreover, since many fibers are near each

other, their interaction must be considered. In the more extreme case of

Slurry Infiltrated Fiber Concrete (SIFCON), interaction may include fiber

entanglement. The fiber entanglement modifies the behavior of the whole

composite. A long and single steel fiber embedded in concrete and

subjected to a direct tensile load (typical pull-out test), will behave like a

steel reinforcing bar in the same condition and undergoing the same kind of

* loading. However, even in the case of normal fiber-reinforced concrete

(as opposed to SIFCON), a single fiber, in the presence of the many other

discontinuous fibers in a concrete matrix, behaves differently. The very

fact that to date, no complete analytical model of the behavior of

* discontinuous fibers in a cementitious matrix has been developed yet,

shows how intricate the problem of bond in fiber-reinforced concrete is.

The analytical work in fiber-reinforced concrete is not the only

* problem a res0c4cher might encounter. Indeed, the experimental work can

be at least equally as streneous. The best example is the problem of

-49-



-50- 0

measuring strains and/or displacements along the interface of a steel fiber

with concrete. It seems almost impossible to make any actual measure-

ment, mainly because of the size of the fiber, not to mention the interaction

among fibers. One possible way of solving the problem will be to use the

following procedure:

(1) To analytically model the behavior of a single fiber in a concrete

matrix.

(2) To use results of experiments to evaluate some of the parameters

involved in the theory.

(3) To generalize the theory to the case of multiple fibers, and possibly

SIFCON in a semi-empirical way.

(4) To use the model thus obtained in conjunction with other theories 0
to predict the overall behavior of the specimen under tensile

loading.

This study will only address the first part of the probiem, i.e. the

analytical model for a single fiber will be developed, and then experimental

data would be used to substantiate it.

The remaining part of this chapter will deal with the differences

between fibers and rebars in bond, as well as the properties of bond in

fiber-reinforced concrete.

4.2 TYPES OF BOND IN FIBER-REINFORCED CONCRETE

Depending on the type of stress transferred accross an interface, two

types of bond are identified: the tensile bond and the shear bond.

The tensile bond resists displacement caused by forces acting per- 0

pendicular to the interface. This kind of bond is of no major interest in

this study, and will thus be overlooked in the remaining part of this report.

The shear bond controls the transfer of stresses parallel to the lon-

gitudinal axis of the reinforcement (rebar or fiber). In an uncracked com-

I I I I I I I I I0
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posite, the shear bond transfers stresses from the matrix back into the re-

inforcement. When the matrix cracks and the load is carried by the fibers

bridging the crack, the shear bond enables the load to be transferred back

into the uncracked parts of the matrix. Shear bond also resists the pull-out

of the reinforcement from the matrix and is therefore one of the main

factors influencing the mechanism and mode of failure of a composite.
Two types of shear bond are capable of transferring stresses acting along

the interface: the elastic shear bond which includes adhesion if any, and the

frictional shear bond. When the elastic shear stress at the interface

between the reinforcement and the matrix exceeds the bond strength of the

interface, bond becomes frictional in nature and the adhesion is broken.

Elastic Shear Bond: If an elastic shear bond exists at an interface and

the shear stress does not exceed the strength of the bond, then the shear
stresses are directly related to the relative slip between the reinforcement

and the matrix. Bartos [4] stated that when elastic bond is prevailing, "the

longitudinal displacements of the fibre and matrix at the interface remain

compatible." A compatibility of displacements would imply zero slip,

which would then mean that no shear stresses are developed at the

interface, hence implying an infinitely large bond modulus.

Frictional Shear Bond: The frictional shear bond resists displace-

ments along the interface parallel to the length of the fiber, and may or may

not depend on the local slip. If the frictional bond is perfectly plastic

(theoretical case), then the stress will be completely independent of the
slip. The frictional bond is characterized by an initial value of the bond,
referred to as the bond strength tmax, which has to be exceeded for the

elastic bond to break and for the frictional stresses to take place.

4.3 BOND IN FIBER REINFORCED CONCRETE

4.3.1 Uncracked Composite

When a fiber-reinforced specimen is subjected to a tensile load, the

tensile stresses are transmitted from the matrix to the fibers and the fibers

* undergo tension. Depending on the strength of the bond between the fiber

0
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and the matrix, the bond may or may not fail under a given load. It is

possible that the following hatpens before ciacking of the matrix:

1- The load is so low (or the chemical adhesion is so strong) that the

adhesive bond does not break, and there is no relative displacement

between the fiber and the matrix.

2- The load breaks the chemical adhesion between the matrix and the

fiber; however the bond strength of the fiber is not attained, so that a

condition of elastic bond prevails along the interface.

4. 3." Cracked Composite

Bond remains a very important factor in determining the properties

of a composite even in its post-cracking stage, but its function changes.

The change is most significant in the case of discontinuous fibers. In the

pre-cracking stage, when the elastic shear bond was intact, the maximum

shear flow occured at the ends of the fibers. The stresses were transferred

from the matrix to the fibers. In the post-cracking stage, the fibers

bridging a crack are pulled out and the interfacial shear stress changes; the

maximum stress now occurs at the point where the fibers enter the matrix

i.e at the crack. If the frictional shear bond is perfectly plastic before the

start of the cracking, it is likely to stay this way in the post cracking stage.

4.4 FIBER DEBONDING

Fundamental information on the nature and strength of the interfacial

bond between the fiber and the matrix in a fiber-reinforced composite

material is usually obtained using the single-fiber concentric pull-out test

specimen and configuration shown schematically in Fig. 4.1. Stress dis-

tributions in this specimen are similar to those within and on the surface of

a fiber normal to and bridging a matrix crack in a composite. The sim-

ilarity holds, assuming that the failure is by matrix tensile fracture fol-

lowed by fiber-matrix debonding and fiber pull-out, i.e. the common fail-

ure mode for discontinuous fiber composites with a brittle or elastic matrix.

However, the values and the exact stress distribution are obviously

ii | I
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P pull-out force

Pull-out 
end slip

fiber

Embedment Matrix
length

Fig. 4. 1 - Typical single-fiber concentric pull-out test specimen.
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different for a single fiber does not behave as it does in the presence of a

large number of neighboring fibers.

Resistance to the debonding and pull-out processes is primarily a

function of the fiber-matrix interfacial bond shear strength and the inter-

facial bond area. Theoretical analyses of this resistance were initially

developed for ductile or plastically deforming matrices and a uniform

interfacial shear stress along the length of the embedded fiber was as-

sumed. Under this assumption, sudden failure of the interfacial bond

occurs when its shear strength is reached and the debonding load, that is

the peak load observed in the pull-out test, is directly proportional to the

embedded fiber length.

However, theoretical analyses of the stress conditions in a pull-out

test specimen with a brittle or elastic matrix show that the distribution of

shear stress along the interface is not uniform, and that the relationship

between the debonding or the pull-out load and the embedded length of

fiber in the specimen is more complex than indicated above. Furthermore,

the variation of the peak pull-out load with the embedded length is nonlin-

ear, and consequently, it cannot be inferred that the true value of the

interfacial bond strength can be obtained simply from this load and the

nominal interfacial area. In fact, as will be shown in Chap. 6, the peak

pull-out load is related to the frictional bond shear stress as well as the

bond strength.

What preceded indicates that even though the pull-out load is not lin-

early related to the embedment length, the embedded length has to be

included in any bond model. 0

4.5 FACTORS AFFECTING BOND IN FIBER-REINFORCED CONCRETE

The problem of bond in fiber-reinforced concrete is hardly under-

stood at all. All ideas presented so far are incomplete. Experimental

invetigations have been carried out [10, 19, 35,.40, 50, 591, but as will be

seen in what follows, corresponding results were not always consistent.

Following is a brief presentation of some of the findings.
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4.5.1 Experimental Investigation

Naaman and Shah [40] reported that the bond efficiency in a pull-out

test of steel fibers inclined with respect to the line of stress is at least as
good as that of fibers parallel to the direction of stress. They also found

* that fiber efficiency decreases with the number of fibers being pulled out

simultaneously from the same area.

Gokoz and Naaman [16] noticed that for steel fibers where a pull-out

0 mode of failure was observed, the postpeak response is almost insensitive

to the loading velocity. They also reported that the peak pull-out load,
which is indicative of the elastic bond at the interface, is strain-rate

sensitive.

It was reported by Gray and Johnston [191 that the direction of

casting has a substantial influence on the bond strength. They stated that
vertically-cast specimens have a higher interfacial bond strength than

horizontally cast specimens. They also found out that an increase in the

sand-cement ratio in the mortar matrix has contrasting effects on the

strength of the interfacial bond in the vertically and horizontally-cast
specimens. For the vertically-cast specimens, there is a decrease in the

apparent interfacial bond strength. They explained that "this reduction in

bond strength is almost certainly a result of a change in the relative pro-

portions of cement paste and aggregate in the matrix with a change in the

sand-cement ratio." For the horizontally-cast specimens there is an in-

crease in the apparent bond strength with an increase in the sand-cement

ratio. This was explained by what the authors called the water gain, i.e.
"the accumulation of water under the embedded fiber due to the tendency of

the bleed water in the mortar matrix to rise during and after consolidation."
Water gain is known to have a weakening effect on the cement paste-

aggregate oond in plain concretes.

It was also noted by Gray and Johnston [19] that the average inter-

facial bond strength increases slightly, but not significantly, with an in-

crease in the fiber withdrawal rate, which is not in contradiction with the

0
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findings of Gokoz and Naaman [161 who stated that bond in fibers is rate-

independent.

Maage [35] found out that the bond properties between steel fibers

and cement-based matrices are of mechanical nature, where the anchoring

effect is essentially more important than the adhesive effect. He also said

that the mean pull-out load per fiber is unaffected by the number of fibers.
This finding is questionable, since this would imply that N fibers have N

times more strength than one single fiber, which is not the case as reported

by Naaman and Shah [40]. Maage ascerts that, "based on the weakest link
theory, it should be reasonable that the pull-out load per fiber would 0
decrease when the number of fibers in the area increased." This of course
is an indication of the variability often encountered in fiber bond tests.

Pinchin [501, who carried out tests on wires, stated that a ccm-

paction of the concrete surrounding a fiber wouhu actually increase the

frictional bond. This property is discussed in Chap. 3 for the case of
reinforced concrete. He also determined that the pull-out load increases

linearly with the confinement. Another interesting finding is that deformed

fibers are less sensitive to pressure than plain (straight) fibers. He also

showed analytically that the pull-out load is proportional to the fiber-matrix
misfit, which he defined as the difference between the radius of the wire
and that of the hole in the matrix in the absence of the wire.

Burakiewicz [10] reported that the shape of the load-displacement

curve depends on the fiber type, and that hooked fibers show smaller

scatter in bond strength than all the other types he tested. He also ob-
served that the pull-out of hooked and indented fibers requires more energy

than that of plain fibers, which implies that deformed fibers have a higher

bond strength than straight fibers. He also stated that there is no

significant influence on the bond strength of vibration and orientation of
fibers during setting and hardening of the matrix, which is in contradiction
with the findings of Gray and Johnston [19]. He finally noted that bond

strength seenr- to depend on the rate of loading of the matrix, which

contradicts the findings of Gokoz and Naaman [161.

0v
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Gopalaratnam and Abu-Mathkour [66] investigated experimentally the

effect of the following three parameters on the fiber pull-out

characteristics: fiber embedment length, fiber diameter and matrix quality.

They observed that the average bond strength is inversely related to the

embedment length and that the average bond strength of an interface

increases with an increase in fiber diameter. They also observed that the

peak pull-out load for identical fibers being pulled out from matrices of

increasing compressive strength does not necessarily increase. Their

reasoning is that the frictional bond strength may be unrelated to the matrix

rcompressive strength.

4.5.2 Analytical investigation

Few studies have addressed the analytical modeling aspects of bond

in cement composites. Most often in such cases, some aspects of the

problem were overlooked.

* Romualdi and Batson [54] assumed that "in the absence of a crack,

the strain in the concrete due to remote tension is equal to the strain in the

wires," hence implying zero slip between the wires and the surrounding

concrete.

Aveston, Mercer, and Sillwood [3] assumed frictional shear bond

with no debonding, hence ignoring the elastic bond that develops for shear

stresses not exceeding the bond capacity of the interface.

Kar and Pal [27], on the other hand, assumed a linear shear stress

distribution along the fiber, with a maximum at the point where a crack

intersects the fiber.

Swamy and Mangat [611 made a similar assumption concerning the

linearity of the shear stress distribution at the interface. However, it can

be shown that a linear bond-slip relationship does not lead to a linear bond

shear stress distribution at the interface.

0
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Larson and Bayasi [69] developed a special test to measure bond

strength of carbon fiber embedded in a cementitious matrix. They observed

that bond strength increases with the water-binder ratio of the matrix which

is attributed to an improvement in workability. They found out that the

bond strength decreases with addition of microsilica and increases

drastically with the addition of latex.

Parameswaran and Rajagopalan [48] recognized the fact that there is

no strain compatibility between the matrix and the reinforcement once

debonding occurs but didnot extend this assumption to the pre-debonding 0

phase. Indeed, at any point, the existance of a mechanical shear stress

must always be accompanied with a corresponding slip.

More recently, a study by Gopalaratnam and Shah [17] addressed the

problem of the tensile response of steel fiber-reinforced mortar. Bond was

incorporated in the study of the pull-out behavior of fibers. However, in

an attempt to apply shear lag theory to the problem of fiber pull-out, they

ignored the normal tensile stresses in the matrix, hence creating a serious

flaw in the analytical part of the study.

Nammur et al. [43] performed a fundamental study of the pull-out

problem and related the pull-out curve to the interfacial bond-slip rela-

tionship. They derived a method of analytically predicting the bond-slip

curve from an experimental pull-out curve. The method is presented with

some improvement in detail in Chap. 5.

Mandel, Wei and Said [67] developed a procedure to determine the 0

coefficient of adhesion, and the energy release rate per unit area of crack

surface at the crack front required for unstable growth of a crack along the

fiber-matrix interface. This procedure uses the results of the pull-out test.

Li and Wang [70] developed a theoritical model to predict the load-

crack seperation relationship for synthetic fiber reinforced concrete. The

distinctive feature of the model lies in the recognition that the fiber matrix

bond strength at any point on the fiber is a function of the slippage

accumulation at that fiber segment.
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Shah and Jenq [711 investigated the interfacial bond properties
between fibers and matrix through analysis of pull-out tests. The bonding

between fibers and matrix was assumed to be perfect before the pull-out
load is applied. Griffith energy criterion was used to govern the crack
propagation at the interfacial region where debonding begins. They also
developed a fracture model that predicts the progressive failure of the
interfacial bond. However, the proposed model doesnot account for

friction in the debonded zone.

Gao, Mai, and Cotterell [72] studied the interface between the matrix
and the fiber with a new fracture mechanics-based debonding criterion by
including the friction in the debonded region. In their study they defined
several basic concepts such as the threshold value of the interface pressure,
friction zone as well as strong and weak fibers.

Gopalaratnam and Chang [731 formulated the pull-out problem in one
dimension with a view to focus on the nonlinear interfacial response. In
general, their work was narrowed to the effect of the softening of the
interface on the pull-out strength, composite ductility, energy absorption

and the stability of the debonding process.

What preceded gives an indication about what could affect the bond
performance of a fiber in a concrete matrix. It also shows how far away

the current state of the art of bond in fiber-reinforced concrete is from
being scientifically reliable and accurate. As was mentioned earlier, this is
partly due to the difficulties involved in performing experiments and
making measurements when small discontinuous fibers are used.



CHAPTER V

ANALYTICAL STUDY OF PULL-OUT PROBLEM

5.1 OBJECTIVE

The main objective of the experimental part of this study is to

generate bond shear stress-slip curves from experimentally obtained pull-

out curves for various fibers and matrix types. Furthermore, an attempt is
to be made at experimentally characterizing the thus-obtained bond shear

stress-slip curves.

An analytical study of the mechanics of the pull-out test is first pre-
sented, so as to make it possible to relate a typical pull-out curve (P-A) to
a bond shear stress-slip (I-S) relationship. A bond-slip relationship is

first assumed, and a pull-out curve is hence derived. The problem of
obtaining (C-S) from a given (P-A) curve would be the reciprocal to the

above mentioned problem.

5.2 STATEMENT OF THE PROBLEM

The analysis that follows pertains to a pull-out test whereby a tensile
force P is applied to the tip of a fiber embedded over a length ( in a
cementitious body (Fig. 5.1).

Initially, it is assumed that the relationship between the bond shear
stress at the interface between the fiber and the matrix, and the relative slip
between the same components is as shown in Fig. 5.2. A more accurate
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P0

Fig. 5. 1 - Pull-out test configuration.

z
0

SLIP

Fig. 5. 2 - Assumed bond shear stress versus slip relationship.
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relationship will be introduced later in this chapter. Thus, it is assumed

that the bond-slip curve is linear elastic up to the point where the bond

strength "Tmax of the interface is reached, beyond which stage purely

frictional conditions prevail, with a constant frictional shear stress equal to

tf. It is also assumed that Tf cannot exceed "Tmax, that is the value of Tf

ranges between zero and tmax. While it is understood that a constant bond

stress equal to tf cannot be sustained forever, it is furthermore assumed

that slips causing the bond stress to diminish significantly beyond tf will

not be attained.

5.3 MATHEMATICAL DERIVATION

5.3. 1 Basic Equations

• T-he free body diagram of an infinitesimal segment of fiber (Fig. 5. 3)

leads to the following equation:

dF - t Idx = 0 (5.1)

* where F is the local force in the fiber at a dist:lice x from the embedded

end of the fiber, Wi is the perimeter of the fiber, and 'r is the local shear

stress at the interface between the fiber and the matrix.

• Eq. 5. 1 can be rewritten as:

dF (5.2)
dx

The product t W is the shear force per unit length, or the shear flow t

at the interface. Hence:

t = 'tI (5.3)

* Furthermore, the local tensile force F in the fiber can be related to

the local strain in the fiber cf thru the following equation:

F Af Ef Ef (5.4)
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Fig. 5.3 Free body diagram of an infinitesimal segment of fiber.
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where Af and Ef are respectively the area and the elastic modulus of the

fiber, and cf is the local strain in the fiber.

Moreover, in the elastic region, the local shear stress t can be related

to the local slip S through the bond modulus K as follows:

= KS (5.5)

S K (f 5m) (5.6)

where 5f and 8 ,m are the local displacement in the fiber and the matrix re-

spectively.

To satisfy static equilibrium, the total force P applied at the free tip

of the fiber has to be resisted at any section by the local force in the fiber

* F, as well as the local force in the matrix T, or:

P = F + T (5.7)

- Af Ef ef + Am Em Em (5.8)

where Am and Em are respectively the area and the elastic modulus of the

matrix, and Em is the local strain in the matrix.

• Differentiating Eqs. 5.2 and 5.6 leads to:

d2 F W (d'9
dx 2  = dx (5.9)

d - = K_ (5.10)
dx ,dx dx}

Combining Eqs. 5 ( and 5. 10, and recognizing the fact that the first

derivative of the local displacement function is the local strain, it can be

proven that:

d2F
dx 2  Eq. . (f " em) (5 I 1)

• From Eq. 7.8, Em can be expressed as a function of Ef as in:
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em = Am1  (P- AfEfEf) (5.12)AmEm

Replacing -m in Eq. 5. 11 by the right hand side of Eq. 5. 12 leads to:

d2 F 1$I
dx 2  - Am Em [Am Em ef- (P - AfEfEf)] (5.13)

-K P + K [ Am Em + Af Ef] Ef (5.14)

-K P + K [ Am Em + AfEf] F (x)

Af Ef 5.5

= -K P + K Q F(x) (5. 16)

where:

K = (5.17)
Am Em

and

Q Am Em + Af Ef
Af Ef

+ A E (5.18)

Af Ef

Eq. 7.16 is a second degree differetial equation in F of the form:

d 2d- F _ X2 F = K  P (5.19)

in which

x = (5.20)

The solution to this differential equation is of the form: 0

F(x) = A' ek x + B' e-Xx + P (5.21)

The unknown coefficients A' and B' are determined from the follow-

ing boundary conditions:

w ! ! ! !0
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1) F(0) = 0 (5.22)

2) F(t) =P (5.23)

Eqs. 5.22 and 5.23 are equivalent to the following two equations in

A' and B':
P

A' + B' + i= 0 (5.24)

A' eX. + B' e-x t + = P (5.25)

The solution to the system of equations described in Eqs. 5.24 and

5.25 is:

A' = P 1 e-X + 1 e-2k(1 - e- 2 1 Q (- e

and B ' = 1 - 1- ( ) -

A' B'Introducing the coefficients A and B, equal to P and

respectively, we get:

A 1  ((1- 1e + -L e2 (5.26)

and B = 1 - I2X. ( - - 1 (5.27)

Using these expressions for A and B, the force F(x) in the fiber, and

the interfacial shear flow t(x) can be respectively expressed as:

F(x) = P A e)' x + B e-)L x + (5.28)

dF
t(x) d

d x

S PX (A • x - B e -k x) (5.29)



-67-

As can be seen from Eq. 5.29, the interfacial shear flow t is a direct

function of the load P. Furthermore, the shear flow is a direct function of

the shear stress as in Eq. 5.3. Also, the maximum shear stress (or flow)

for a given load will always occur at the point where the fiber penetrates

the matrix, or at x =4.

5.3.2 Critical Force

Given the bond-slip relationship, there will be a critical force Pcrit

that will induce a shear stress at x = [ equal to "tmax, or a shear flow equal

to tmax where:

tmax = Itmax Vt (5.30)

To find Pcrit, the shear flow at x = f, or tU) has first to be evaluated:

t) = P X (A eX B e - k- ) (5.31)

= P - t  1- (1 + e-2k-)+ (IV2e ' ) I (5.32) 0
1 e 2 (3 Q) (Q)

Setting t(l) equal to tmax yields the value of Pcrit; thus:

=max Irma I - e - 2) .  "3
Xr[. (- (1 + e'2k[)+ 2e- 'L

When a force P < Pcrit' elastic bond conditions prevail at the inter-

face, and no debonding occurs; in other words, the fiber remains fully

bonded to the surrounding matrix.

5.3.3 Elastic Displacement

The displacement of the free end of the fiber (at x=1) can be eval-

uated using the following equation:

I I I I I
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t

A :(e(X) - Em(X)) dx

CF(x) P - F(x) d

;-TfEgf Am Em)dx

-P dx F
Jm Em f;f Ef+ Am Em dx
0 0

-P I Q F (x) dx (5.34)
Am Em - Am Em 0

To carry out the integral in Eq. 5.34, F(x) is replaced by the right
hand side of Eq. 5.28. A is found to be as follows:

A P (Q 2) (1(5. 35)
= Am Em + e-XI)

As can be seen from Eq. 5.35, there is a linear relationship between

the applied force P and the displacement of the fiber free end. Moreover,

in a pull-out curve, the slope of the ascending linear portion of the curve is

given by:

(PX Am Em +e'

K = (Q - 2) 1 e (..36)

5.3.4 Debonding Zone

When the applied force P exceeds Pcrit, a region identified as "zone

of debonding" will develop and grow as the applied force P increases. In

other words, two interfacial zones will adjacently coexist, one that is

bonded and one that is debonded, i.e. one where debonding has occurred
because the shear stresses have exceeded Tmax . Fig. 5.4 shows typical

bond shear stress distribution for cases with different values of P. The

forces resisted by these two individual zones will be identified as bonded

0
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tmax

T f

Tmax t

fig. 5.4 -Typical bond stress distributions for cases w here:

(a) P= ci

(b) P = P1 > Pcrit

(C) P = P2 > P1.
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force Pb and debonded force Pd respectively. To satisfy static equilibrium,

it can be inferred that for any load P > Pcrit,

P = Pb + Pd (5.37)

Based on the assumed bond shear stress - slip relationship shown in
Fig. 5.2, the interfacial shear stress prevailing in the zone of debonding is
constant and equal to 'rf. This means that the normal force distribution in

the fiber is linear, decreasing at the rate of tf per unit length, where:

tf =f (5.38)

Ir this study, the length of the zone of debo ding will be noted by u.
The length of the bonded zone is hence (I(- u). Over this bonded length,
the same shear stress distribution prevails as in the case where P <- Pcrit,

except that the force is P' = (P - tf u), and the length is (( - u). Therefore,

the shear flow distribution along the interface of the bonded length can be

expressed as:

tb(X) = (P tf u) X (A* eXx - B* e - - x) (5.39)

where

A - eI2.(-u) 1- 1 e--((-u) + e-2k(fu)) (5.40)

and B- e -2 (-u) I- e-(-u) (5.41)

The relationship between P and u can be obtained by setting the value

of the shear flow at x = ((- u) equal to tmax, or:

(P - tf u) X (A* ek( t - u) - B* e 4 '- - u)) = tmax (5.42)

or, replacing A* and B* by their respective values given in Eqs. 5.40 and

5.41, P can be found explicitly as:

0
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P tfU+ tmax 1 -e-2( - u)

P 2 e-k( - u) + 1 Q (1 + e-2)([ - u))

(5.43)

Since the force resisted by the debonded zone can be easily found as:

Pd = tf u (5.44)

then, Pb, which is equal to the difference between the total force P (given

in Eq. 5.43) and Pd (as per Eq. 5.44), can hence be found as: 0

Pb = tMaI e-2X(f - u)

ek( ( u)+ 1 - (1+ e-2X(f - u))

(5.45)

To determine the distribution of the force in the fiber in the bonded

zone, Fb, the shear flow distribution in that zone is integrated:

x
Fb(x) = tb(y) dy (5.46)

(P - tf u) Xj (A* eXY - B* e-XY) dy

= (P - tf u)(A* eXX + B* e - )x - A* + B*) (5.47)

Naturally, Eq. 5.47 holds for values of x between 0 and (I(- u). x =

0 at the fiber's embedded end, and x = (I(- u) at the point of demarcation

between the bonded and debonded zones. Fig. 5.5 shows the interfacial

bond shear stress and the fiber normal force distribution under conditions 0
of partial debonding.

The force distribution in the debonded zone can be expressed as:

Fd(z) = P - tf z (5.48) 0
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pull-out conditions.
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Equation 5.48 holds for values of z between 0 at the free end, and u

at the point of demarcation between the bonded and debonded zones.

To find the displacement at the free end, Eq. 5.34 is still valid, ex-

cept that the integral will be carried out separately over each of the two

zones, thus:

"P + Q Fd(x) dx + Fb(x) dx (5.49)

Am Em Am Em d +

in which Fd(z) and Fb(x) are as given in Eqs. 5.48 and 5.47 respectively. 0

The integral in Eq. 5.49 yields:

(P(Q-1)u - tfu2 (Q-2) + (P-tfu)i-+--- (u) Q-2 _ tfU2 (Q2 X

AmEm

(5.50)

5.3.5 Dynamic Mechanism of Pull-Out

The value of tne length of the debonded zone u goes from zero at the

onset of debonding to I at complete debonding (purely frictional bond shear

stresses at the interface). For each value of u, one value for the pull-out 0

load and the corresponding end slip exists.

Once u has reached (, a dynamic mechanism of pull-out develops.

The relationship between the pull-out load and the slip can now be derived. 0
If the rigid body displacement of the fiber is referred to as v (Fig. 5.6),

then the pull-out force is:

P = tf((- v) (5.51)

The force F within the fiber at a distance x from the point at which

the fiber penetrates the matrix is:

F(x) = tf(f- v- x) (5.52) 0

• , I I I0
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The dynamic pull-out slip A is now equal to the total rigid body
movement of the fiber v, added to the elastic elongation within the fiber,

or:

A = J(Ef(x) - Em(x)) dx + v

[-V
F(x) P F dx+vA- ff - Am "E-m d

__ xa d dx + v
_ ffEm d+AfEf + Am Em

0 0

-P ((-v) Q [-
A Em A- E f F(x) dx + v (5.53)= Am +Am Em 0

The dynamic pull-out slip A, as given by Eq. 5.53, is almost equal to
the fiber rigid body movement v. This suggests an almost perfectly linear
relationship between the applied pull-out force P, and the dynamic pull-out

slip A, of the form:

P = tf(I - A) (5.54)

As is demonstrated in Chap. 6, pull-out tests conducted in the lab
suggested a descending branch that is not linear, but decays more rapidly
(Fig. 5.7), which suggests a decay in the the frictional bond. In other
words, the assumption that the bond shear stress remains constant after the
bond strength 'tmax is reached is not correct. However, it is acceptable at

small values of slip.

An alternative convenient way to look at the descending branch
would be to assume that the bond shear stress versus slip curve is as

shown in Fig. 5.8. Therefore, it is assumed that at some point after the
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Fig. 5.8b Alternative bond shear stress versus slip relationship with
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bond strength 'max is reached, the frictional shear stress starts decreasing

with the slip. In what follows, it will be assumed that the slip for which
the friction starts decaying is the slip Ao that corresponds to the case of

full debonding, which is the onset of the dynamic mechanism. Ao is

assumed small in comparison to the embedded length. Under this
assumption, the equations given in this chapter, that pertain to both the
fully bonded case and the the case-of partial bonding are still applicable.
At this stage, a state of complete failure of the elastic bond between the
fiber and the matrix exists. Thus, the only phenomenon that describes the

resistance of the fiber against pull out is frition.

5.3.5. 1 Normal Contact Pressure. The frictional stress is equal to the
normal contact pressure on the steel fiber multiplied by a coefficient of

friction:

td = PN (5.55)

in which PN is the normal contact pressure between the fiber and tht

matrix.

From examining the free body diagram of the embedded fiber in Fig.
5.6, one can write from equilibrium that:

dF = t d 4 dx (5.56)

where dF is the differential of the local force in the fiber at a distance x.

So if we divide Eq. 5.56 by the cross sectional area of the fiber we

get:

dff = dx (5.57)rf

Substituting the right hand side of Eq. 5.55 in Eq. 5.57 leads to:

dff = 2 g PN dx (5.58)rf



-78-

But from the shrink fit theory [Timoshinko], the interfacial contact

pressure PN in a shrink fit configuration (Fig. 5.9) with no load on the
fiber and for rf <<rm is given by:

PN = Imr (5.59)
(1 -+ v m ) (1 - Vf)

Em + Ef

where Emr is the radial shrinkage strain in the matrix in addition to, if

present, the strain due to any externally applied confining load.

The radial shrinkage strain Er in the matrix can be expressed as:

E:mr = (5.60)rf

8 in Eq. 5.60 represents the matrix-fiber misfit. The misfit was

defined by Pinchin [50] as "the difference between the fiber and the hole
radius in the absence of the fiber" (Fig. 5.9).

8 = rf-ro (5. 60-a)

5.3.5.2 Poisson's Effect. However, when the fiber is loaded longitudinally
with a stress ff, it will be subjected to a Poisson' s contraction Efr such that:

SEfVf (5.61)

This strain Efr will obviously reduce the interfacial contact pressure

caused by the original matrix strain, thus:

Eeff = Emr - Efr (5.62)

r= - Vf (5.63)
rf Ef

substituting the right hand side of Eq. 5.63 in Eq. 5.59, and solving the
resulting differential equation, the stress in the fiber can be expressed as

follows:
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ff = - Exp -2 vf p x E (5.64)

(Ef Tf( + Vm) + 1 ( vf) rf vfEf Em Ef

where x is the embedded length of the fiber.

Multiplying Eq. 5.64 by the cross sectional area of the fiber yields

an equation for the pull-out load as a function of the embedded length x:

I - -2 v " g.t x )/8 Ef 7t rf
(EX rf((1 + Vm) + (1- Vf) Vf

,f Em Ef )

(5.65)

5.3.5.3 Effect of Decay in Misfit . It is observed that 8, the fiber-matrix

misfit, deteriorates (i.e. decreases) as the fiber is pulled out. This is due
to a combined action of abrasion and compaction of cement and sand
particles surrounding the fiber since the steel fiber is harder than the
matrix.

Several attempts were made in this study to model the decay in
misfit. A linear and a parabolic function were considered. The best results
were obtained when the decreasing trend of the misfit was assumed ex-

ponential, as suggested by comparison with experimental pull-out curves.
The following expression for the fiber-matrix misfit 8 is proposed in this

study:

8 so (5.66)

1 4e-(1-A+Ao)T

in which:

AO  = relative slip of the fiber under conditions of full

debonding

A = the end slip
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50 = the initial fiber-matrix misfit = rf-ro

= a dimensionless constant to give the analytical

descending branch the same asymptotic value as the

experimental one.

The initial fiber-matrix misfit 80 is calculated by equating the pull-

out load that corresponds to an embedded length x = f(in Eq. 5.65. That is

P is replaced by tf. (. Hence:

80 = tf I vf I - Exp - f
Ef 7t rf Ef r ( -2 vm ) + vf)

ILLL L Ex~ r(lEm (1 EfjJ10

(5.67)

AO can be obtained from Eq. 5.50, with a P = tf/ , and u = (, or:

(Q - 2) tf (2 (5.68)AO = 2 Am Em

Fig. 5. 10 shows a typical plot of the variation of the misfit as related

to the relative slip between the fiber and the matrix. This plot pertains to a

smooth fiber of diameter 0.01 inches pulled out from a high strength

cementitious matrix containing 2% by volume steel fibers of the same kind

as the one being pulled out. Additional information on this series can be

looked up in chapter 6, tables 6.3 through 6.5.

In pull-out tests the embedded length of the fiber is equal to the

difference between the original embedded length and the additional end

slip, i.e. x = [(- ( A - Ao ). On the other hand, in pull-through tests the

embedded length of the fiber is constant and equal to the original embedded

length, i.e. x = I

5.3.5.4 Frictional Shear Value. The above described methodology makes

it possible to find an equivalent value for the frictional shear bond for any
given pull-out load, or end slip A, since:

I I I I I0
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P = V'"d(x) x

or

Td(x) =

vx

P 0

~(I - A + AO)

The value of P obtained from Eq. 5.65 can be divided by the

corresponding embedded length, thus giving an equivalent value for the

frictional shear bond for a given slip, hence:

Td(A) I - Exp . - gjj * 

Ef rf + vm ) + (1 Vf)
Em  Ef

80 (e(A'Ao)l 4e'(t1 ) Ef ic rf (5.69)

'(I - 4e-([-A+A)1)(( - A + A 0 ) vf

which is valid for A > A0 .

A typical plot of td versus x where x=[-A+A o is shown in Fig. 5. 11.

The initial frictional stress rf, is equal to "td(Ao), hence:

I - Exp -2 vf g E ) 0 Ef7nr (5.70)

Efr (1 + VM) + ( f) Vf

Hence, the decaying frictional stress 'Id can be expressed as:

4D
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= ~ e-(A-Ao)'l. e(Y •
Td(A) = X 1 - A+Ao)n

r--2 vl ([- A + a,,)

E( m ) + v 9f)
Em Ef -(5.71)

I E Efr (I +Vm) (1vf) )Em + E,

5.4 PREDICTION OF PULL-OUT CURVE (PRIMAL PROBLEM)

For a given bond shear stress versus slip relationship of the type

discussed above (Fig. 5.8), a complete pull-out curve can be predicted.

The predicted pull-out curve (Fig. 5.7) is divided into three distinct regions

and can be obtained using the following procedure:

1. Pre-critical region: it is a linear portion; the critical point (PcritAcrit)

is enough to describe this linear zone, which extends from the origin

to the critical point.

2. Partial debonding region: for each value of the length of the

debonding zone u, one point on the curve can be found by computing

the corresponding pull-out force and end slip (Eq,. 5.43 and 5.50).

As many points as needed within this range can be found, so long as

the value of u is bound between 0 and the fiber length (.

3. The pull-out region: for each value of the end slip A (A0 !5 A :< [),or

(0 < (A-A o ) < I), a value for the pull-out load can be determined

from Eq.5.65, hence leading to one point on the pull-out curve.
When (A-Ao) reaches the value of , the force would be equal to

zero.
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5.5 PREDICTION OF BOND-SLIP CURVE (DUAL PROBLFM)

Given an experimental pull-out curve for a given fiber, the bond

shear stress versus slip curve can be theoretically obtained, assuming that

it is of the type described in Fig. 5.8, i.e. linear elastic ascending branch,

followed by a purely frictional region, and then a deteriorating frictional

zone(see Eq. 5.70). The whole curve can hence be described by five

parameter. , namely the bond modulus ic, the bond strength " max , the

constant frictional bond stress "f, the value of the slip at which the bond

starts to deteriorate A0 , and the decaying frictional parameters , and T1,

describing the deteriorating frictional zone.

The bond modulus ic is determined from the slope of the linear as-

cending portion of the pull-out curve, which can be obtained graphically. 0

Furthermore, the value of Q (Eq. 5.18) can be evaluated from the physical

and mechanical properties of the fiber and the matrix. Judgment and

common sense are to be used in evaluating the area of the matrix Am.

Indeed, only a fraction of the matrix cross sectional area is effective if the

proportion of the specimen's cross sectional area to that of the fiber is

relatively large. However, it can be shown that the solution to the dual

problem is insensitive to the value of Am. Once Q and the slope (AP are

known, X can be solved for in Eq. 5. 36 by iteration or by some numerical

procedure. Having found X, and using Eq. 5.20, K can now be solved for:

K 1 2 (5.71)

Finally, the value of the bond modulus K can be derived from Eq.

5. 17:

K = 1 (572
Ic - -- Am Em K (5.72)

The next step would be to evaluate the bond strength of the interface

'Imax as well as the frictional bond f. The peak load Pp and the

corresponding end slip AP are to be studied first. The peak load will

0
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generally occur under partial debonding conditions. The value of u
corresponding to that case is the value of u that would maximize P. Hence,
for u = up, we have:

(dPL =du 0 U

where P is as given in Eq. 5.43:

P = tf u + tu-I- e-2 X(I u)
m 2 1 ek (1+e2X(( - u)Q e-k((-u) + (Q1 Q 1

To make the differentiation easier, a change of variables is in order.
Introducing the variaole X defined as:

X = e-( - u) (5.73)

then dX - X e-X(I- u) (5.74)du

dP dP dXa du zfx- =ad du - dX du

(dP}@ = 0 (5.75)thus '-L -- X

where

Xp = e-X(( - Up) (5.76)

P(X) ln(X) + tf I -ax I X 2

"2 1 ) (- Ix l +X 2)

(5.77)

-2 2 4 1 2'dP _ tf +tma" -Xp i5 1 -Q X

X=X p Xl 2 + 2 +I 5.8

(5.7 8)
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2

also P(Xp) t-fln(Xp) + tf (+ -max 1 x1_
S 2 Xp + ( I-(I +

(5.79)

P(Q - 1) 1(inA +L -f l(1X + (f (Q - 2)0

and A(X) - Am Em

tfln(X ( 2 1'~ _-x -D tf [ 'n(Xp)

+ AtLEm

(5.80)

To get the values of tf and tmax, a system of three non-linear

equations in three unknown has to be solved, the three unknowns being tf,

tmax, and X p. The first equation is obtained by setting the right-hand side

of Eq. 5.78 equal to zero. The second equation is obtained by setting the

right-hand side of Eq. 5.79 equal to Pp, the maximum recorded load on the

(P-A) curve, and the third equation consists of equating the right-hand side

of Eq. 5.80 to Ap, the end slip corresponding to Pp.

The corresponding system of three equations in three unknowns is

thus as follows:

-2 2 2

t + m 2= 0 (5.81)

2
I X2

tn(Xp) + tf [+ tmax 2 = Pp (5.82)
2 X + I I + X2

Q l ll
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p (Q - 1) + --) + (Q 2) - tf [ ln(X J+
4 Am Em

I (X (Q 2) x

+ Am Em = Ap (5.83)

the value of up corresponding to the value found for X has to be between

0 and f. The above three equations, when solved, lead to the values of tf,

tmax and Xp or equivalently up. The numerical solution is described in

Appendix V-A.

The experimental pull-out curves developed in the course of this

* investigation suggested a steep initial decay in the post-peak pull-out

behavior, that is when A is close to Ao. A parametric study of Eq. 5.70
indicated that the factor reflecting the rate of initial decay is rI. To best

simulate the real experimental curves, a good value for r1 was found to be

* near 0.2.

To evaluate the factor 4, one point on the experimental pull-out curve

is needed, say (Px, Ax). Then, from Eq. 5.65, and using the values of Px

* and Ax, 8 can be solved for:

Ef x rf ( I + vm) + (1
EXP 2 fEm _ JJ

(5.84)

Ther -. substituting in Eq. 5.66, 4 can be solved for:

-(00'" - e-(1"Ax,_A°)
0 2

(0) (5.85)

I-(Ax-A 0 ) 0 2  -

.. 00)
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where 6 is as given in Eq. 5.84, and 80 is as given in Eq. 5.67.

With the five basic parameters c, max, Tf , Ao, and known, the

whole bond shear stress versus slip relationship can be constructed.

Examples and correlation with experimental observations are presented in

Figs. 5.12-5.18. Those examples show the application of the analytical 0

model in solving the dual problem as explained earlier in section 5.5 of this

chapter. The numerical data used in the solution is presented in Appendix

V-B. Examples on the application of the proposed model in solving the

primal problem i.e. predicting the pull-out curve are presented in Chapter 6 |

(Figs. 6.22-6.27).

0

0

".

0
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APPENDIX V-A

APPLICATION OF NEWTON'S METHOD FOR SOLVING A SYSTEM OF

NON-LINEAR EQUATIONS TO THE DUAL PROBLEM OF PULL-OUT

A. 1 GENERAL

A system of n non-linear equations in n unknows can be expressed as

follows:

F( ) - 0 (A. 1)

where F is a vector of functions F1, F 2 , ... Fn, evaluated at the solution

vector of the unknows z1 , z2 , ... zn , or:

II

F20

F

Fnj

and z ( Z2 z. )

hence Eq. (A. 1) is equivalent to:
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€ "F ( z I ,  Z 2 ,  ..Z n ) ' - 9 7 ",

F 2 (zl, z 2 , .. zn )  0 0

(A.2)

0

\.Fn(zl, z2 , .... zn), 0

Newton method, discussed in the following secti ,n, converges to the

exact solution vector , provided the initial guess vector, say z(0 ) is close

enough to , and provided the Jacobian F' of F is continuous and the

matrix F' ( ) is invertible.

A.2 ALGORITHM

The algoritm to be followed in Newton's method is to start from the

initial guess vector z( 0 ), and successively improve it till the improvement

becomes insignificant. Given a guess z(m), an improved solution z(m+l)

over z(m) can be obtained by the following equation:

z(m+l) = z(m) - [F'(z(m))Il F(z(m)) (A.3)

0
or

F'(z(m)) (Az(m+l))= F(z(m)) (A.4)

where 0

Az(m+l) - z(m+l) - z(m) (A. 5)

F' is the Jacobian of the vector of functions F 1 , F 2 , .... Fn.

Therefore, F' is an nxn matrix, defined by its F'ij element, that is the

element in the ith row and the jth column, as:

F' = - (A.6)
zj 0
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Therefore, the way to solve the system of n non-linear equations in n

unknowns consists of defining the vector F and the corresponding Jacobian

matrix F', and then, starting with an initial guess vector z( 0 ), successively

improving the solution by solving Eq. A.4 for Az(m+l), and then finding an

improved solution z(m+l) in the following equation:

z(Mr +l) = Az(m+l) + z(m) (A.7)

A. 3 Application of Newton's Method to the Dual Problem of Pull-out.

It can be recalled from Chap. 7 that the dual pull-out problem

consists of solving three non-linear equations in tf, tmax, and u. The

equations in question are rewritten here:

tf ex(( - u) +

-2 2
(~ e-2X(I u) 4 -) e4X(( u)-

*~~~ O @~)eX(f u)2 e4 (W - u) +(1 j 0
Q Q

(A. 8)

tf U + tax 1 e-2X(" - u) -~= 2

(A. 9)

!Lu 1, e -)(I-u, g-Q 2 tf/2 (Q-2) + (PptfU T

(P(Q~1- U 2  )(+le -X~-uu) Q -
AmEm =A

(A. 10)

The vector of functions F is equal to:
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F F 2j (A. 11)0

The vector of unknowns is:

= ma (A. 12)

The functions F1 , F2 , and F3 are defined respectively as:

FI OF, tmax, U) - tf e(I - u) +

((i ~)e. - ~ Q X(-u- 2 X u)+ 2 ( - - U) +1J

F2(tf, tmax, U) -

tf U + 1a - 2 X(f - u)
S 2 /Xfu 2( 1 -P

(A. 14)

F 3 (tf, tmx, u) -

(Pp(Q-1)u -t~ (Q-2) + (P-tu )(~x(U +~ ~ t f U 1

-AMEM AP (A. 15)

The Jacobian matrix F can be written as follows:
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l F1  OF1  0F1

F'aF aF, a_,

F Itf t (A. 16)
,-tf at aF a

The 9 elements of the Jacobian matrix F' are given next:

F' 1  = F

e t- u)Su)(A. 
17)

F' 2 ,1  =

= u (A. 18)

aFF' 3 ,1  = tf

- ie4(u~ QL2 + - (Q - 2) u-2

F'I, 2  =F aF
-2 e X(I u) ~4 1i 1- e4 (( -U) - 2

-2X(f u)) (1. u) +

(A. 20)
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F 2 ,2  a 

1 1 e-2X( - u)

X 2 e-k( , u) ( + 1 ( + e-2( - u))

(A.21)

F 3.2F' 3 ,2  =

= O(A.22) 0

Since the partial derivatives involving the variable u are rather

complex and involved, the functions F1 and F2 will be rewritten as follows

first:

F I Of, tmax, U) tf ex( l - u) tmax 0(u) (A.23)Fl~~~tf,~7 (U)U) =+(A 3k X fl(u)

in which

-2e. u.( 1  l"ek(.u 2
O(u) - e2k(t - u) - 4 - u) - (A. 24)Q Q)l

and

1( -2 (I u 2 ektu +  1 -)2A 25
1l(u) = ( 2 eX(I - u) + I - f 25)

F2(tf, tmax,U) = tf u + tmax 4t(u) (A.26)
X (u)

in which:

g(u) I - e2k(I - u) (A. 27)

and

(a (u) = 2 (1 _+ + e2X(1 - (A. 28)Q Q)+ - ( )
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F 1.3 = i -U

- tf ex(- u) + tmax 4'(u) fl(u) - O(u) T, (U) (A.29)X rl2 (u)

in which

(u)= Q e2X( -u)4 1 )eX(lu) (A.29)

and

T1 (u) 2 2 1 -Ie-2k(( u)+ 2

( 2k(( - u)+2 e-k( -u) + (I

Q) Q

(A. 30)
DF

F' 2 3  = -u

tf + timax '(u)r0(u) - W W(u)'(u) (A.31)k tM2(u)

in which:

t'(u) = 2 e-2X((- u) (A. 32)

and

(u) 2 X e u) +) -2u) (A.33)
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F' 3 , 3  = u

Pp (Q -1)- 2 tf u (Q - 2)- tf

2 P. e'(( - u) (Q -2) _ -Q 2 1 - u)
(1 + e-( - u))2 +tf 1 +eX(u)

2 tf u e-.( t " u) (Q - 2) (A.34)

(1 + e'k( t - u))2
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APPENDIX V-B

NUMERICAL DATA USED IN THE SOLUTION OF THE DUAL
PROBLEM

0
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TEST RESULTS: HIi sies

Slope (P/A) • 44x103 lb/in High strength concrete (8.6 ksi).

Max. pullout load: 15.4 lb 1% fiber by volume.

Slip at max load : 8.8x1O-4 in No additives.

• Point on the descending branch (4.3 lb, 0.15 in)

MEASURED PARAMETERS:

Fiber diameter 0.0 19 in.

Fiber Embedded length 1 in.

ASSUMED PARAMETERS:

Fiber modulus of elasticity (Ef) • 3x10 7 psi.

Matrix modulus of elasticity (Em) • 3xl0 6 psi.

Effective matrix area surrounding the fiber 1 in 2 .

Coooefficient of friction (stell-mortar) • 0.5.

Fiber poisson's ratio • 0.2.

Matrix poisson's ratio • 0.2.

COMPUTER PROGRAM:

Solving the three basic nonlinear equations yielded the following:

=0.786

K ~ ~ ~ ~ ~~ C W1 5.9 6 l/n .--------------------------------------K= 56.9x i06 lb/in 3  r. . . .... .. . . .. ... .. .. . . .

WL.j Matrix Strength -Higm
'Ti = 258 psi P iu-out Fiber Smooth

'F i riber Volume Fraction - I

Ck:Add l~e% - NM Tn

= 258 psi < Fiber Damee - 019'
i Embeaded Length -

----- ACtIu COWg DeCo*b~

Ascending Branch

S I 0
0000 0002 0004 0006 0008 0010

SLIP (in.)

Bond shear stress versus slip, HISN series, small scale.

i I I
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TEST RESULTS: ONsre

* .Slope (P/A) :25x i03 lb/in .High strength concrete (8.6 ksi).

Max. pullout load: 15.6 lb .0% fiber by volume.

Slip at max load : 9.25xil04 in .No additives.

*Point on the descending branch (1. 3 lb, 0. 1 in)

MEASURED PARAMETERS:

Fiber diameter :0. 0 19 in.

Fiber Embedded length I in.

ASSUMED PARAMETERS:

* .Fiber modulus of elasticity (Ef) :3x107 psi.

Matrix modulus of elasticity (Em) :3x106 psi.

Effective matrix area surrounding the fiber :I in 2 .

* .Coooefficient of friction (stell-mortar) .0.5.

Fiber poisson's ratio :0.2.

Matrix poisson's ratio :0.2.

COMPUTER PRO-GRAM:

Solving the three basic nonlinear equations yielded the following:

= 1.3_______________________

K = 0.841x10 6 lb/in3

'Ti = 334 psi pu (-Out Fibr Smooth

Tf = 257 psr iber Diameqter - 0019'

psiiEmbedded Length-V

ACt~l DWWrg Debo..dWl

Z; Ascending Bran~ch

.0000 .0002 .0004 .0006 .0006 .0O1O

SLIP (in.)
Bond shear stress versus slip. HOSN Series, small scale.

49
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TEST RESULTS: ONsfr

*Slope (P/A) 5 52. l x10 3 lbin .Low strength concrete (4.8 ksi).

*Max. pullout load: 12. .6 lb .0% fiber by volume.

*Slip at max load : 7.3x 1O- in .No additives.

*Point on the descending branch (2.97 lb, 0. 15 in)

MEASURED PARAMETERS:;

Fiber diameter : 0.019 in.

Fiber Embedded length : 1 in.

ASSUMED PARAMETERS:-

Fiber modulus of elasticity (Ef) .3x10
7 psi.

Matrix modulus of elasticity (EM) .3xl0
6 psi.

-Effective matrix area suirrounding the fiber I in 2 .

Coooefficient of friction (stell-mortar) :0.5.

Fiber poisson's ratio .0.2.

Matrix poisson's ratio .0.2.

COMPUTER PROGRAM:

Solving the three basic nonlinear equations yielded the following:

=0.91

U1

K = 5.25x10 6 lb/in3  I-g~

=W1 s Matrix Strength-Lo
21-s Pull-out Fiber Sm~ooth

(A Fiber Volum~e Fraction a O

CX ~Additives -None
=f 21 1 psr iber- Diameter - 009psi Embedded Length -

ACtual Nora'. D4?bof-WQ

Ascending Branch

Co F
.000 00 .0 0002 -J4 .0006 .0008 '0010

SLIP (in.)

Bond shear stress versus slip. LOSN series. small scale.
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TEST RESULTS:-&HSLsrc

* Slope (P/A) :67.8x 1O3 lb/in .High strength concrete (8.6 ksi).

*Max. pullout load: 22. 1 lb .2% fiber by volume.

*Slip at max load : 15.9x10-4 in .Latex as an additive.

0 Point on the descending branch (4. 8 1lb, 0. 1 in)

MEASURED PARAMETERS:

*Fiber diameter :0. 0 19 in.

Fiber Embedded length I in.

ASSUMED PARAMETERS;

* .Fiber modulus of elasticity (Ef) :3x107 psi.

Matrix modulus of elasticity (EM) :3x106 psi.

Effective matrix area surrounding the fiber I in 2 .

* .Coooefficient of friction (stell-mortar) :0.5.

Fiber poisson's ratio :0.2.

*Matrix poisson' s ratio :0.2.

COMPUTER PROGRAM:o

Solving the three basic nonlinear equations yielded the following:

= 0.938

KC = 8.79x10 6 lb/in3  a

cUL M ~atr-ix Strength Migh'
'T 1390 psi p.uotrX. nah

(.4 C Fibe.- Vot.w r~ctto
Addtle,,- Latex

=f259 psi FbrDaee 09

I ~~~~~Embeddjed Lon-t( .- ,D c

Z ASCending Branch

----------------------------------------------------------------------------------------

02 W - -
I -

0000 o0001 0002 0003 0004

SLIP (in.)
Bond shear htress versus slip. H2SL series. small scale.

0
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TEST RESULTTS: Al1N sries

S lope (P/A) :55x 103 lb/in .Average strength concrete (7.4 ksi). 0

*Max. pullvu load: 10. 8 lb .1% fiber by volume.

*Slip at max load : 6.34x io- in .No additives.

*Point on the descending branch (5 lb, 0. 15 in) 0

MEASURED PARAMETERS:

*Fiber diameter :0. 0 19 in.

*Fiber Embedded length I in.

ASSUMED PARAMETERS:-

Fiber modulus of elasticity (Ef) :3x10 7 psi.

Matrix modulus of elasticity (Em,) :3x10 6 psi.

Effective matrix area surrounding the fiber I in 2 .

Coooefficient of friction (stell-mortar) :0.5. 0

Fiber Poisson's ratio :0.2.

Matrix poisson's ratio :0.2.

COMPUTER PROGRAM:

Solving the three basic nonlinear equations yielded the following:

=0.0337 r

1C = 5x10 6 lb/in3  r

psi Matrix Strecngth .A Vraqw

Tin = 20 p i I 1 Putt-out Fiber- Smooth
(A Fiber Volume Fraction'

18 Fib*,- 01 ter 0 .019.
If 18 ps AJEbedded Length -

ACntWol buivg DebOnd'O

IM Ascending Branch

0000 .0002 .0004 0006 .0008 0010

SLIP (in.)
Bond shear stress versus Slip, AISN series. small scale.
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TEST RESULTS:

Slope (P/A) 45xi0 3 lb/in Average strength concrete (7.4 ksi).

Max. pullout load: 12.6 lb 0% fiber by volume.

Slip at max load : 7. 18x 10-4 in No additives.

Point on the descending branch (4.9 Ib, 0.1 in)

MEASURED PARAMETERS:

Fiber diameter • 0.0 19 in.

Fiber Embedded length I in.

ASSUMED PARAMETERS:

Fiber modulus of elasticity (Ef) • 3x10 7 psi.

Matrix modulus of elasticity (Em) • 3x10 6 psi.

Effective matrix area surrounding the fiber I I in 2 .

Coooefficient of friction (stell-mortar) • 0.5.

Fiber poisson's ratio . 0.2.

Matrix poisson's ratio • 0.2.

COMPUTER PROGRAM:

Solving the three basic nonlinear equations yielded the following:

C
U1

K =3.87x10 6 lb/in 3  C,

U
1 H~~~Mtr Strlnqth ,At'g

m = 210 psi Put-ou ber Soot21 0rbpsi Volume r,-action 0

Addl tl*S I None

Tf = 210 psi C• riber Di -ete • ,oO"
LJ Embedded Length * I"

V) &-- Atut D-.mlg D b@"lO

C3 ASCending gror.C

00

.0000 .ooo2 .0004 0006 .0008 0010

SLIP (In.)

Bond shear stress versus slip. AOSN series, small scale.

0



CHAPTER VI

EXPERIMENTAL INVESTIGATION AND RESULTS

6.1 EXPERIMENTAL PROGRAM

0 Table 6.1 summerizes the experimental program carried out in this
study. A total of fifty-two series, four fibers each, were tested. The pro-
gram was designed in such a way so as to investigate the effects of the
fiber type, matrix strength, fiber reinforcement ratio, fiber diameter, fiber

embedment length ,and additives on the interfacial bond in cementitious
composites. Test series were given names that would indicate the mix and
fiber type as well. A typical code name would consist of four alphanumeric

characters. The first character is a letter that indicates the matrix strength:
H for high strength, A for average strength, and L for low strength. The

second character is a numeral that indicates the fiber volume fraction in the
matrix, such as 0, 1, 2, or 3. The third character is a letter that indicates

the fiber type: S for smooth, D for deformed, and H for hooked. Finally,

the fourth and last character indicates the additive used: F for fly ash, L for
latex, M for microsilica, and N for no additives. A typical code name for a

specimen could be: LOSN for a Low strength matrix with 0% fiber
reinforcement, in which the pull-out fiber is Smooth, and where No
additives are used.When a different diameter or embedded length is used a
remark is added near the specimen code.

-i i
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Table 6.1 - Experimental Program

Matrix Strength Vf Fiber Type Additives Code

High 0 Smooth None HOSN

High 0 Smooth None HOSN, L=0.5" 0

High 0 Smooth Latex HOSL

High 0 Hooked None HOHN

High 0 Hooked None HOHN L=0.5"

High 0 Deformed None HODN

High 1 Smooth None H1SN

High 1 Deformed None H1DN

High 2 Smooth None H2SN

High 2 Smooth Latex H2SL

High 2 Smooth Microsilica H2SM

High 0 Smooth Microsilica HOSM

High 2 Smooth Fly Ash H2SF

High 2 Deformed None H2DN

High 3 Smooth None H3SN

High 3 Deformed None H3DN

Average 0 Smooth None AOS N

Average 0 Smooth Latex AOS L

Average 0 Smooth Fly Ash AOSF

Average 0 Smooth None AOSN, L=0.5"

Average 0 Smooth None AOSN, L=1.5"

Average 0 Smooth None AOSN,D=0.01"

Average 0 Smooth None AOSN,D=0.03"

Average 0 Smooth None AOSN,D=0.04"

Average 0 Hooked None A0HN

Average 1 Hooked None A1HN

Average 0 Hooked None AOHN L=0.5"

Average 0 Deformed None AODN

Average 0 Deformed None AODN, L=O. 5"

0 Defr
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Average 1 Smooth None A1SN

Average 2 Smooth None A2SN

Average 3 Smooth None A3SN

Average I Deformed None A1DN

Average 1 Deformed None A1DN, L=O.5"

Average 2 Deformed None A2DN

Low 0 Smooth None LOSN

Low 0 Hooked None LOHN

Low I Hooked None L1HN

Low 3 Hooked None L3HN

Low 0 Deformed None LODN

Low 0 Deformed Latex LODL

Low 0 Deformed Micr,,ilica LODM

Low 1 Smooth None LlSN

Low 2 Smooth None L2SN

Low 2 Deformed None L2DN

Low 3 Deformed None L3DN

SIFCON 12 Smooth None L= I",D=0.01"

SIFCON 12 Smooth None L= 1,D=0.019"

SIFCON 12 Smooth None L= I",D=0.03"

SIFCON 12 Smooth None L= lD=O.04"

Average 0 Deformed None AODN *

Average 0 Hooked None HOHN *

• [Pull-out Fiber was greased on the surface].

6.2 TEST SET-UP

Each test series consists of a block of matrix 7"x4"xl" crossed by

four pull-out or pull-through fibers (Fig. 6.1). Hence a series represents
four tests. The test set-up used in this study is illustrated in Fig. 6.2. As

can be seen in the figure, the top end of the fiber is held by a specially

designed grip attached to the load cell of an INSTRON machine, while the
bottom end of the same fiber is attached to a miniature LVDT, connected to
the bench of the machine. Also, the displacement of the top end of the



-114-

1/2"A

Pull-out

4 '0 7

0

A_ Matrix

1 "

0

Fig. 6.1 View of specimen showing block matrix and pull-out fibers

0

-V " fib0

/ -
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TEST SET-UP

Testing machine
cross head

Load cell

Fiber grip system
LVDT 1

Pull-out Fiber

Specimen

LVDT 2 Signal
Specimen grip conditionei

system

Fig. 6.2 - Test - setup*.

*For pull-out tests, the same setup was used with only one LVDT at -he top.
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fiber is monitored by means of another miniature LVDT installed inside the
grip. The end of the core of this LVDT touches the top surface of the

specimen. The upward movement of the crosshead of the testing machine
applies a pull-out force on the top end of the fiber. The value of the force,
as well as the movements at both ends of the fiber are recorded by a Data
Acquisition System, and stored on a disk. Although only the readings of
the top LVDT are needed to obtain the ascending branch of the full pull-out
curve, and hence the bond shear stress-slip relationship, the reading of the
bottom LVDT is useful in determining the load at which full debonding

occurs. The LVDTs used are Schaevitz, 250 MHR, with a stroke of ±0.25
in, and a sensitivity of lxIO-4 in.

When the smooth or deformed fibers were used (0. 3 and 0.5 mm in

diameter respectively), a 100 lb. load cell was used. The hooked fibers ne-
cessitated the use of a 1,000 lb. load cell. 0

The tests were all crosshead movement-controlled. The speed of the
crosshead movement, and hence of the test was varied during the test. A
typical test started off rather slow (0.002 in./min) for the ascending
branch, and ended at a much higher rate ( 0. 1 in/min ) for the steady

portion of the descending branch

6.3 VARIABLES 14VESTIGATED

6.3.1 Fiber Parameters

6. 3. 1. 1 Pull-out Fiber Type. Three different types of fibers were pulled
out, namely: smooth, deformed, and hooked. While the actual length of the
fibers may differ, the embedment length was kept equal to 1" for most of
the specimens. As seen in Table 6.1, two other embedment lengths (0.5"
and 1.5") were selectively used. The information about most of the pull-out

fibers used is summarized in Table 6.2. Fig. 6.3 shows the shapes of

these fibers



SMOOTH

DEFORMED

Fig. 6.3 -Types of pull-out fibers used .
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Table 6.2 - Fiber Specifications.

Fiber Type Code Diameter (in.)

Smooth S 0.019

Deformed D 0.018

Hooked H 0.03 S

6. 3. 1.2 Fiber Diameter. For smooth fibers, four different fiber diameters
were used , 0.01 ", 0.019" [control diameter I , 0.03 ", and 0.04 " . In

most cases the embedment length was 1" , and the matrix was plain of

average strength .

6.3.1.3 Fiber Embedment Length. Three different embedment lengths were
investigated , namely , 0.5 ", 1"[ control length I , and 1.5". For the 0.5"

and 1.5" cases, the matrix was plain mortar of average strength and the

diameter was 0.019 " for smooth fibers, 0.018" for deformed fibers,and

0.03" for hooked fibers.

6.3.2 Matrix Parameters

6.3.2.1 Matrix Strength. Three different mix proportions were used to
create low strength, average strength, and high strength matrices. The

sand-cement ratio was kept constant at 2.0, while the water-cement ratio
used was 0.40, 0.50, and 0.60 for the high strength, average strength, and
low strength mixes respectively. Type I cement and silica sand - ASTM

C109 were used. For the SIFCON matrix, a very fine silica sand (type 400)
was used. The mix proportions are summarized in Table 6.3.

Table 6. 3 - Mix Proportions

Matrix Strength Code w/c ratio Cement Sand f' (psi)*

High H 0.4 1 2 8650

Average A 0.5 1 2 7400

Low L 0.6 1 2 4850

SIFCON - 0.52 1 1 6000

* from average tests on 3"x6" cylinders.
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6.3.2.2 Additives. Three different additives were used in some mixes to
see whether or not their use would affect the bond properties of the inter-

face. The additives used were Latex, Microsilica, and Fly Ash. No two
additives were used simultaneously in the same mix. Information on the

proportion of each additive is summarized in Table 6.4.

Table 6.4 - Additives.

Additive _ Symbol % of cement weight % of solids in Additive

Latex L 20 50

Fly Ash F 20 100

Microsilica M 20 50

6.3.2.3 Fiber volume fraction. Four different volume fractions of fibers
were used in the specimens: 0% fiber volume fraction (control

unreinforced mortar), 1%, 2%, and 3%.

In addition, four Slurry Infiltrated Fiber Concrete (SIFCON)

specimens were tested to study the effect of fiber entanglement. The fiber
volume fraction in SIFCON (Vf 11%) is usually significantly higher than

that in normal fiber-reinforced concrete (up to 3%). In all cases of

reinforced matrices, the same type of fibers (hooked, 30/50) were used ili

the mix .

6.4 TESTING PROCEDURE

Typical pull-out tests were performed on 52 series of four pull-out

fibers each. As was mentioned in §6.2, different combinations of fibers,

matrices, and additives were used. During these pull-out tests, the pull-out

force, the end slip, as well as the movement of the bottom end (free end) of
the pull-out fiber [for pull-through tests only] were monitored. The pull-

out force and the displacement at the top end of the fiber were used to

develop pull-out curves, i.e. pull-out force versus end slip curves.
Typically, for each series, four different pull-out curves were obtained.
For smooth fibers pull-out and pull-through tests were conducted at a

crosshead speed of 0.002 in/min up to the peak load. For deformed and
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hooked fibers the crosshead speed ranged from 0.002 to 0.02 in/min up to

the peak load. The speed was then increased up to 0. 1 in/min in the steady

portion of the descending branch.

For any given pull-out test, both the pull-out load P (lbs.) and the
end slip A (in.) at the section where the fiber enters the matrix were

recorded by a data acquisition system and stored in a data file on IBM-

Diskettes. The data were processed as described in Fig. 6.4 . The pull-out

load versus end slip relationship was then developed and plotted using such

data files. Plots with different vertical and horizontal scales were used

depending on the specimen type.

6.5 CURVE AVERAGING PROCEDURE

One representative curve was needed for each of the series tested.

The criterion used to chose the proper averaging method was that the aver-
age curve has a peak pull-out load Pp equal to the average of the peak pull-

out loads recorded for the individual pull-out tests. Furthermore, the
average curve was to have a corresponding end slip at peak Ap equal to the

average end slips at peak for the individual tests. Finally, equal weights

were to be assigned to all curves used in averaging.

The average curves were obtained using a computer program written

by D. E. Otter [47]. The method used to obtain these curves was as fol-
lows: the peak pull-out loads for all tests in the series were first determined

and averaged, and so were their corresponding end slips. The average peak

pull-out load, as well as its corresponding end slip were hence determined.

The pull-out loads on the ascending (pre-peak) branch of each pull-out

curve were evaluated at 50 equal end slip intervals. The interval was

selected in terms in each curve's own peak displacement . The average of

these loads at each interval was evaluated, and taken as the average load at

the corresponding end slip interval based on the peak point of the average

curve. The same interval was used for the descending (post-peak) branch

of the average curve. Examples of series of four pull-out tests and their

average curve (in dotted line) are shown in Fig. 6.5.
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SIFCON - VF ?

W Putt-cut Fiber Smooth0
_Q Additives i oine

LlFiber Diameter =0.1

Embedded Length

TI o --- Average Curve

0-

-j
D
n~

.00 .05 .10 .15 .20 .25

END SLIP (inl,)

Matrix Strength Average

V) Putt-out Fiber 1Smooth
_Q Fiber VoLume Fraction 13%.

Z5 Additives 1None

- Fiber Diameter =0.019'

M Embedded Length =0.5'

-:

L3
D --- Average Curve
0

I ui
-j

.00 .05 .10 .15 .20 .25

END SLIP (in.)

Fig. 6.5 -Pull-out tests of the four fibers and the average curve
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6.6 PULL-THROUGH VERSUS PULL-OUT TESTS

In the pull-through tests the fiber extends below the bottom surface

of the specimen so that the embedment length remains constant during the

pull-out process. For the pull-out tests, the fiber does not extend below the

bottom surface of the specimen and thus the emdedment length decreases

during pull-out.

The differences in loads measured in the pull-out and pull-through

tests for 1" embedment length were not significant for end slips less than

about 0.2" . To show the difference between these two types of tests at

larger slips, pull-out and pull-through loads were plotted versus the end

slip for the entire embedment length , i.e. up to 1" embedment length

Figs. 6.6 and 6.7 show some typical results. It can be observed that there

is some decay in the response, even when the embedded length remains

constant.

6.7 PULL-OUT LOAD VERSUS END SLIP RELATIONSHIPS

6.7.1 Smooth Fibers

For smooth fibers the load was generally linear up to a load termed

Pcrit in Chapter V. The value of Pcrit however was close to Pp, the peak

load. After Pp, the load dropped quickly, the higher the matrix strength,

the faster the drop ( up to 60% drop in the peak load at full debonding in

some series). As shown in Fig. 6.8a, the descending branch of the curve
indicates that debonding in smooth fibers is faster than for other types of

fibers. The rate of debonding is negative (positive curvature), meaning that

as the slip increases, the bond decreases drastically.

0 In the case of pull-through tests, after full debonding has occurred,

the load approaches a constant value at small slips. However large slips

tend to induce decay at the interface between the fiber and the matrix and

the concrete tunnel around the fiber surface is damaged. In the case of

pull-out tests, frictional forces decrease not only because of decay but also

because the embedment length decreases.
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In the ascending branch it is observed that the elastic strain

contribution to the measured slip was significant especially for small fiber

diameters (0.01") . This contribution decreased when larger diameters

were used although the pull-out load increased . Fig. 6.8b illustrates the

pull-through curve when elastic strains are accounted for , i.e, the elastic

elongation at the free end is substracted from the observed slip.

Another source of error is due to the fact that the smooth fibers,

being cut from spring-type st, el wire, were not perfectly straight , i.e. (had

some curvature ). Such imperfections in straightness or at the fiber tip

which becomes flat due to cutting did influence the pull-out load versus

slip measurements especially at large slips .

Table 6.5 shows some values of (P/A), the initial slope of the load-

slip curve for different types of specimens in which the pull-out fibers

were smooth. These values range from 25,000 lb/in to 68,000 lb/in,

depending on the type of specimen. In these results, the value of A is

corrected to account for the elastic strain contribution.

Table 6.5 - Pull-out Data

Series (P) (103 lbs/in) Pp (lbs.) Ap (10-4 in.)

H2SF 44.0 13.4 7.80

LOSN 52.1 12.6 7.30

A1SN 55.0 10.8 6.34

H2SL 67.8 22.1 15.9

H2SM 30.0 16.8 9.48

HOSN 25.0 15.6 9.25

L2SN 31.0 10.3 6.01

AOSN 45.0 12.6 7.18

HOSL 40.8 12.1 7.12

H3SN 35.0 17.2 4.33

A2SM 28.0 12.5 2.72

H2SN 40.0 18.9 18.2
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The readings of the bottom LVDT showed that the load at which
the fiber starts to pull out is, in general, slightly less than the maximum

observed load. Table 6.6 summerizes the values of the peak load and the

load at which the second LVDT starts to move with their corresponding

displacements as obtained from tests not including the effect of fiber

elongation. In Table 6.6, A2 is the end slip of the first LVDT for the load

P2 described in column 4. Fig. 6.9 shows the ascending branch up to the

peak load on a larger scale for smooth fibers as obtained from tests without

accounting for fiber elongation.

Table 6.6 - Loads and displacements of smooth fibers.

Series Pmax(lbs.) Amax (in.) P2 (Ibs.) A2 (in.)

AOSL 21.7 0.00382 19.3 0.00419

AOSN 13.4 0.00294 13.0 0.00310

AOSN D=0.03 20.6 0.00260 _ _

A2SN 16.7 0.00291 - _

A3SN 18.8 0.00275 15.9 0.00322

AOSN D=0.01 10.6 0.00717 10.2 0.00754

AOSN L=0.5" 10.5 0.00226 9.8 0.00226

HOSM 14.6 0.0030 13.7 0.00322

Sifcon D=0.01 12.3 0.00921 11.5 0.00921

sifconD=0.019 22.0 0.00464 16.0 0.00515

Sifcon D=0.03 30.2 0.00159 28.5 0.00196

To account for fiber elongation during pull-out, the elastic elongation
Ae = (P*L)/(Af*Es) should be substracted from the values of Amax and

A2. For example , for series AOSL, P=21.7 lbs., L= 0.5", Af= 0.000283

in2, Es = 29000 ksi =, Ae = 0.00132 in, thus the corrected value of Amax

is 0.00382 - 0.00132 = 0.0025 in. It should be noted here that the values

of A given in Tables 6.7 and 6.8 do not include the effect of fiber

elongation.
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6.7.2 Deformed Fibers

Typical pull-out load versus end slip curves of deformed fibers are

shown in Fig. 6.10. It can be observed that the ascending branch is made

out of two parts. The first part is linear and the second part is highly

nonlinear. It is observed that for the second part, the resistance to pull-out

is due not only to the interfacial bond between the fiber and the matrix

(similar in nature to that found in the case of smooth fibers), but due to an

additional resisting force provided by the mechanical deformations on the

fiber surface. Fig. 6. 11 shows the ascending part of a pull-out curve on a

larger scale for a typical deformed fiber, while Fig. 6. 12, shows the pull-

out curve for a deformed fiber up to an end slip of 0.25" . Following the

peak load, the pull-out load starts to drop. However, in this case the drop

is different from that seen in the case of smooth fibers. This difference is

due to the fact that for deformed fibers, as the slip increases, the smooth

portion of fiber surface tends to debond fast ( as in the case of smooth

fibers) while the mechanical indentations on the fiber surface try to

displace the concrete encasing these deformations. When that concrete is

displaced or crushed, the load drops drastically to values close to zero.

This can be explained by the fact that when the concrete in contact with the

fiber surface has been highly disturbed, it could no longer provide the

frictional resistance, as the one observed in the case of smooth fibers.

However as soon as the deformations enter another section of the tunnel (of

different cross section ), the load picks up again and a cyclic response is

observed. This is illustrated in Figs. 6.13 and 6.14.

Pull-out tests performed on deformed fibers showed that these fibers

would reach ultimate strains and fail at loads around 45 lbs. Many fibers

failed when such load levels were reached or exceeded. Deformed fibers
whose diameter is 0.018", exhibit very high stresses before debonding and,

as a result, failure may occur before full debonding or the start of pull-out.

An optimum case will be when the fiber d-,bonds completely and starts

pulling-out just before the ultimate strength of the fiber is reached. Data

from tests on deformed fibers [not including the effect of fiber elongation]

showed that the displacements at maximum loads were 15 to 20 times those

of smooth fibers. If fiber elongation is accounted for, this value could
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Fig. 6.10 - Typical pull-out load versus end slip of deformed fibers.
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Fig. 6.12 - Pull-out load versus end slip of deformed fibers.
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exceed 50 . Table 6.7 shows values of loads and displacements of
deformed fibers at peak load and the load at which the second LVDT

(attached to the free end) starts to move.

Table 6.7 - Loads and displacements of deformed fibers.

Series P2 (lbs.) A2(in.) Pmax (lbs.) Amax (in.)

AODN 11.5 0.00975 35.4 0.0511

A1DN 16 0.00341 33.8 0.0822 0

L2DN 18 0.00335 43.3 0.0660

L3DN 12 0.00792 40.0 0.0423

LODM 6.5 0.00171 21.6 0.0674

The pull-out behavior of deformed fibers for large slips is shown in

Figs. 6.13 and 6.14. In Fig. 6.14, which shows a pull-through curve, it is

observed that the curve repeats itself every 0.2" over the descending

branch. This corresponds to the size of the deformed portion (indentation)
of each segment of the fiber. The load cycles reach about the same peak
value and have the same shape. This can be explained as follows: as slip

increases, the already disturbed concrete by the previous indentation is
again disturbed by the following indentation. The total resisting force is

thus approximately the same.

Fig. 6.13 shows a pull-out test, where the repeated curves are

decreasing in amplitude. This decrease is due to the fact that the number of

deformations decreases with a decrease in the embedment length during
pull-out.

A final observation on deformed fibers, is that the deformations (or

indentations) on the fiber surface were not exactly uniform for all batches

of fibers used. For some fibers surface deformations were not deep
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enough . As a result of this, these fibers were pulled out rather easily

from the matrix

6.7.3 Hooked Fibers

A typical pull-out load versus end slip curve for hooked fibers is

shown in Fig. 6.15. As was the case for deformed fibers, the ascending S
branch is made up of a linear and a non-linear part. Figs. 6. 16, 6. 17, and

6.18 show actual pull-out load versus slip behavior of hooked fibers

respectively up to the peak load, up to 0.25 " end slip ,and up to 0.5 " end

slip . Fig. 6.19 shows a typical pull-out load versus end slip curve up to 1" 0

end slip.

Although hooked fibers used in the tests have a different diameter

than either smooth or deformed fibers, it is still possible to compare their

behavior with the smooth or the deformed fibers. The ascending branch

had generally a steeper slope, due to the presence of the hook, which pro-

vides a considerable resisting force to pull-out. As the hook is being

pulled out from the matrix, it pushes on the surrounding concrete and tends

to straighten up, hence causing the slope of the ascending branch to start

decreasing. When the hook has been partially straightened and debonding

has occurred, the pull-out load starts to drop. As the slip increases, the

load continues to drop as the partially straightened fiber tries to slip further

in the surrounding concrete tunnel. Therefore, the shape of a portion of

the descending branch reflects the case of a partially straightened fiber

trying to pull out, hence inducing frictional forces along its surface. When

the hook becomes straight, the descending branch drops fast and the last

lower portion of the curve reflects mainly the frictional forces between the

fiber surface and the matrix.

The maximum pull-out load for hooked fibers varied from 50 lbs. to

105 lbs. depending on the matrix strength. Displacements at peak loads

were 10 to 15 times those of smooth fibers, not including the effect of fiber

elongation. If fiber elongation is accounted for, this value could exceed 30.

On the other hand, displacements at peak loads of hooked fibers were less

than those of deformed fibers . Table 6.8 shows the peak loads and the

corresponding displacements of hooked fibers.
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Table 6.8 - Loads and displacements of hooked fibers.

Series Pmax (lbs.) Amax (in.)

HOHN 102.8 0.0288

AOHN 80.3 0.0354

LOHN 58.9 0.030

A1HN 91.7 0.0478

LIHN 48.8 0.0437

L3HN 66.1 0.0354

HOHN L=0.5" 89.2 0.0332

AOHN L=0.5" 72.6 0.0411

It was observed in some experiments that the hook had broken inside

the matrix before straightening .When the hook breaks the load drops
faster and the pull-out behavior afterwards resembles that of a smooth
fiber. Fig. 6.20 shows end hooks before and after pull-out. Fig. 6.21(a)
shows three pull-out tests of hooked fibers up to 1" end slip while figure
6.21 (b) shows the pull-out load versus end slip of hooked fibers where

two fibers had broken inside the matrix.

6.8 PULL-OUT WORK

The pull-out work, or the dissipated bond energy is defined as the

area under the pull-out curve. This area was found to be much smaller in
the case of smooth fibers, than for deformed or hooked fibers.

Typical Pull-out work values calculated for the three types of fibers
from test data are shown in Table 6.9 . The table shows pull-out work
values for pull-out and pull-through tests at peak loads, at 0.2" end slip,

and at 1" end slip.



-139-

a) Hook before pull-out.

(b) Straightened hook.

(c ) Broken hook.

Fig. 6.20 - End hooks before and after pull-out.
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Table 6.9 - Pull-out work for different types of fibers

Series Test Wmax(lb-in) W 0.2" (lb-in) W I"(lb-in)

H3SN Pull-through 0.0239 1.25

H2SN Pull-through 0.0481 1.21

H2SM Pull-out 0.0473 0.925

LOSN Pull-through 0.0178 0.761

H1SN Pull-through 0.0243 1.21 4.29

AOSN Pull-out 0.0336 1.29 4.06

AOSL Pull-out 0.0694 0.967 4.40

AOSN D-0.01" Pull-out 0.0436 0.761 1.37

Sifcon D=0.01 Pull-through 0.0736 1.32 6.12

AOSN D=0.03" Pull-through 0.0342 1.41 -

HIDN Pull-through 3.76 5.13 13.4

AODN Pull-through 4.35 6.03 16.9

L2DN Pull-hrough 2.19 5.47 14.8

LOHN Pull-out 1.21 8.81 18.7

L1HN Pull-out 1.69 6.93

L3HN Pull-out 1.78 8.56 _

AOHN Pull-out 2.33 10.9 23.9

A1HN Pull-out 3.41 - _

AOHN L=0.5" Pull-out 2.29 10.5 16.8

HOHN Pull-out 3.06 14.5 29.2

To compare pull-out work of different types of fibers, pull-out work
values of some series of deformed and hooked fibers were normalized with

respect to the pull-out work values of smooth fibers at peak load, at 0.2"

end slip, and at 1" end slip . Normalization was done by dividing the pull-

out work of deformed and hooked fibers by the pull-out work of smooth

fibers. Table 6. 10 shows these values.

0 m u u m mmm mmm
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Table 6. 10 - Pull-out work ratios

Series Wmax/WmaxS WO.2"/WO.2"S WI "/WI"S

L2DN 123 6.82 4.03

AODN 129 4.67 4.16

LOHN 67 7.33 4.1

AOHN 69 7.73 4.2

It is observed in Table 6.10 that the pull-out work to the peak, Wmax

for smooth fibers is about 0.7% to 1.5% of the work to the peak of
deformed or hooked fibers. This value increases to about 15% to 20% at 0
0.2 " end slip and to about 25% at I" end slip.

6.9 DEVELOPMENT OF BOND SHEAR STRESS VERSUS SLIP

RELATIONSHIP CURVES 0

The procedure described in Chapter V was used to predict bond shear

stress versus slip relationships from the average pull-out curves. Since the
development of the theory in Chapter V was based on the assumption that 0
the bond shear stress versus slip curve is elastic with an exponentially
decaying frictional zone, the (C-S) curves predicted had the same

characteristic shape. Since only selected pull-out curves were used to
predict the (t-S) curves, the bond-slip curves obtained are representative 0

but not exact for all cases. A more accurate way of getting the bond slip

curve for a given matrix-fiber combination would be to perform a point by

point analysis of the pull-out curve, and for each point on the curve, get a
corresponding point on the (t-S) curve. Such a method would be 0
substantially more complicated and numerically involved. The main
parameters found for individual series using the procedure described in
Chapter V, namely K, rmax9 'tf, and , are given in Table 6.11.
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Using the parameters of Table 6. 11, it is possible to predict the pull-
out load versus end slip as described in Chapter V. The predicted curve can

then be compared to the experimentally observed curve. Such comparisons

are shown in Figs. 6.22 to 6.28. Figs. 6.28 (b), (c), and (d) show a

magnified scale of the ascending branch only. It can be observed that the
predicted curves are in reasonably good agreement with the experimental

curves.

Table 6. 11 - Pull-out Data

Series K(106 lb/in 3 ) rmax (psi) trf (psi)

H2SF 3.69 255 223 0.053

LOSN 5.25 211 211 0.910

A1SN 5.00 200 180 0.0337

H2SL 8.79 1390 259 0.938

H2SM 1.51 285 275 1.03

HOSN 0.841 334 257 1.30

L2SN 1.65 176 172 -6.50

AOSN 3.87 210 210 -1.00

HOSL 3.13 207 202 1.06

H3SN 2.21 289 289 0.523

A2SM 1.24 209 209 5.73

H2SN 3.00 300 280 2.28

6. 10 EFFECT OF FIBER AND MATRIX PARAMETERS ON THE LOAD-

SLIP RELATIONSHIP

6. 10.1 Effect of Matrix Strength

As shown in Fig. 6.29, for the case of hooked fibers with different
matrix strength, the pull-out load increases with increasing matrix strength.

For smootn fibers this increase was mostly noticeable in the ascending

branch.
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Fig. 6.28 - Experimental pull-out curve versus analytical prediction of pull-out

curve of smooth fibers up to the peak load
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Fig 6.29 - Effect of matrix strength on pull-out load end slip relationship.
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6.10.2 Effect of Fiber Volume Fraction

The effect of fiber volume fraction is shown in Fig. 6.30 . This

effect seems to be rather insignificant. It can be observed that an increase
up to 3% in fiber volume fraction increases the pull-out load by about 10%,

while it leads in the post-peak range to a slight increase in the fiber

resistance to pull-out. This trend was not clear when compared to the

variability of results observed. It seems that the pull-out fibers, being

much smaller in diameter than ordinary reinforcement, probably do not

cause appreciable damage to the surrounding concrete upon pull-out; thus 0

adding some fibers to the matrix may not add much to the interfacial bond

strength between the fiber and the matrix .

Wh:n SIFCON matrices were used [ Vf = 11% 1, considerable

improvement in the interfacial bond strength between the fiber and the

matrix was observed, both before debonding and after debonding . An

increase of 20% to 25% in the pull-out load was observed before debonding

and 75% to 80% increase was observed after debonding . The presence of

fibers in the matrix in such high percentages seems to provide an additional

bond component, namely fiber interlock. Such an arrangement provides

excellent confinement to the mortar which considerably increases the

interfacial bond strength and the pull-out work. Also it helps reduce

frictional decay in the descending branch of the curve. Fig. 6.31 shows a

typical pull-out load versus end slip curve using plain and SIFCON

matrices

6.10.3 Effect of Additives

The effect of additives is presented in Fig. 6.32. In terms of

maximum pull-out load values, Latex was found to yield the highest values,

followed by Fly ash . Microsilica did not seem to improve the interfacial

bond strength and the test series was repeated twice to ascertain this result.

With Latex a 50% to 60% increase in the pull-out load was observed over

plain matrix; this remarkable increase in pull-out load leads to a rapid drop

in the load at debonding as was observed with high strength matrices

After complete debonding, the load remains almost constant in the
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Fig. 6.30 - Effect of fiber volume fraction on pull-out load slip relationship of smooth

fibers.

C)
CU

tA Smooth Fiber
Diwameter = 0,01'

Vi Embedded Length =

C
-j

LD

:D
Eo] SIFCON - V= 11/

9 rvi

-j-J
D

.00 .05 .10 .15 .20 .25

END SLIP (in.)

Fig. 6.31 Effect of SIFCON matrix on pull-out load slip behaviour of smooth fibers.
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Fig. 6.32 - Effect of additives on pull-out slip relationship of smooth fibers.
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frictional phase. Fly ash increased the maximum pull-out load by 10% to
20% and was more effective than Latex in improving friction forces.

6.10.4 Effect of Fiber Diameter

Pull-out load versus end slip curves for fibers of different diameters
* are shown in Fig. 6.33 . A change in fiber diameter did not affect the pul-

out load -end slip behavior of smooth fibers. Elastic strains in the free

portion of the fiber decreased as fiber diameter was increased although the
pull-out load increased . It was observed that the load-slip measurements

* became more sensitive to fiber curvature as the diameter increases.

6. 10.5 Effect of Fiber Embedment Length

The effect of fiber embedment length on bond strength is shown in
Figs. 6.34 , 6.35, and 6.36. It was observed that the ascending branch of
the curve is less sensitive to the fiber embedment length than the
descending branch for smooth fibers. The pull-out load end slip

0 relationship exhibited the same behaviour in both cases for the three
different types of fibers. In hooked fibers, since the hook contributed most
to the pull-out load, changing the embedment length from 0.5" to 1" did
little to the ascending portion of the curve. However, in deformed fibers ,
since the number of surface indentations increase with the increase in

embedment length, changing the embedment length from 0.5" to 1"
approximately doubled the value of loads in the ascending branch.

0 6.10.6 Contribution of Surface Indentations and End Hooks

6.10.6.1 Surface Indentations. In one series of deformed fibers, the pull-
out fibers were greased on the surface to isolate the effect of surface
indentations. The average pull-out curve versus end slip of this series was
then superimposed on the pull-out curve versus end slip of a smooth fiber
of same diameter. The resulting pull-out curve versus end slip curve was
compared to the experimentally observed curve of deformed fibers. Such a
comparison is shown in Fig. 6.37. It is observed that the two curves are
quite similar . The difference between the two curves can be attributed to
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Fig. 6.33 - Effect of fiber diameter on pull-out slip relationship of smooth fibers.
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Fig. 6.34 - Effect of fiber embeddment length on pull-out load slip behaviour of smooth

fibers.
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C~)
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C5- Embedded Length = 1'

C: CSDeformed Fibers
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Fig. 6.35 -Effect of fiber embeddnient length on pull-out load slip behaviour of

* deformed fibers.
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Fig. 6.36 -Effect of fiber embeddment length on pull-out load slip behaviour of

hooked fibers.
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Fig. 6.37 -Experimental pull-out curve versus superposition pull-out

curve of deformed fibers.
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Fig. 6.38 - Experimental pull-out curve versus superposirior .,all-out

curve of hooked fibers .
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the variability in experimental data and to the non- uniformity of grease

distribution on the fiber surface.

6.10.6.2 End Hooks. In one series of hooked fibers, the pull-out fibers
were greased on the surface to isolate the contribution of the end hook to

the pull-out load. The average pull-out load versus end slip of this series
was then superimposed on the pull-out load versus end slip curve of a

smooth fiber of same diameter. Similar to deformed fibers, the resulting

curve was compared to the experimentally observed curve. Such

comparison is shown in Fig. 6.38. Here also, the two curves are in

reasonably good agreement.

6.10.7 Stress Levels in Pull-out Fibers

The pull-out load of the average curve of one series of smooth, deformed,

and hooked fibers was divided by the corresponding fiber area [(fl*d*d)/4]

to obtain the fiber axial stress. Fig. 6.39 shows the values of fiber stresses
versus slip for the three types of fibers. It is observed that the stress levels

in smooth fibers are much smaller than those of deformed or hooked fibers.

Many deformed fibers failed during pull-out because stress levels were

close to the failure stress of the fiber (C--u = 170 ksi). For hooked fibers

the fiber stress varied from 100 to 150 ksi approximately.

6. 11 GENERAL OBSERVATIONS AND CONCLUSIONS

From the results of this limited txperimental study, the following

conclusions can be drawn:

1. Hooked fibers and deformed fibers have higher resistance to pull-

out than smooth fibers because of the mechanical contribution of

end hook and surface deformations respectively. At larger slips,

deformed fibers provide oscillatory resistance to pull-out , while

the resistance of hooked fibers continues to decrease as the end
hook straightens out . Smooth fiber resistance to pull-out also

decreases but at a faster rate than deformed or hooked fibers
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Fig- 6.39- Stress levels in pull-out fibers.
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2. As matrix strength increases, the bond between the fiber and the
matrix increases. However, debonding fo!lowing the peak load is

much faster for high strength matrices .

3. Fiber volume fraction in the matrix has little effect on the bond
between the fiber and the matrix . An increase of 10% to 15% in the
maximum pull-out load was observed as the fiber volume fraction
increases from 0% to 3% . A similar trend was observed in the post

peak range.

4. The presence of latex emulsion and fly ash in the matrix, was found
to improve the bond at the fiber matrix interface. Howevef, latex
was much more effective tian fly ash. The addition of microsilica

did not lead to any noticeable improvement in the bond strength at
the interface.

5. The pull-out work of smooth fibers is significantly smaller than
that of deformed or hooked fibers. It was also observed that, in
the case of smooth fibers, the amount of pull-out work to the peak
load was a small fraction of the total pull-out work. This means
that, in the case of smooth fibers, the work provided by frictional
forces is larger than that provided by the forces of initial adhesion.
For hooked or deformed fibers on the other hand, the fraction of
the pull-out wor'- to the peak load was larger than for smooth
fibers, and the work contributed by the mechanical forces was
dorr-nant. Everything else being equal, the pull-out work up to the
complete pull-out of smooth fibers is only about 15% to 20% of

that of hooked or deformed fibers.

6. Bond shear stresses increase with an increase in matrix strength,
and are affected by the type of pull-out fiber used. For smooth
fibers, maximum bond stresses were found to range from 176 to
334 psi, and frictional stresses ranged from 172 to 289 psi. A
maximum bond stress of up to 1390 psi was observed when latex
was used.
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7. The fiber diameter and fiber embedment length did not affect the

characteristics of the pull-out load versus end slip relationship.

8 The bond shear stress slip relationship of hooked and deformed

fibers can be decomposed into two parts: one due to the interfacial

bond of the smooth surface of the fiber, and the other is provided

by the end hooks in case of hooked fibers or by surface

indentations in the case of deformed fibers.
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Appendix VI A

"Additional Experimental Load-Slip Curves"

Notes

1- For all Smooth Fibers, the Diameter is 0.019" and the

Embedded Length is 1" except where indicated otherwise.

2- For all Deformed Fibers, the Diameter is 0.018" and the

Embedded Length is 1" except where indicated otherwise.

3- For all Hooked Fibers, the Diameter is 0.03" and the

Embedded Length is 1" except where indicated otherw:

0
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CHAPTER VII

BOND STRESS MODEL FOR FIBER-REINFORCED CONCRETE BASED

ON BOND STRESS-SLIP RELATIONSHIP

7.1 INTRODUCTION

There is a basic need for the study of bond in fiber-reinforced ce-

mentitious composites. Materials scientists and engineers have been aware

of the importance of bond; the problem has indeed been addressed before.
However, few thorough studies have been conducted to date, and to the

best of the authors' knowledge, no complete analytical model of bond in

* cementitious composites has been developed.

Existing studies are incomplete, in a sense that all the aspects of

bond were not investigated. Some authors assumed non-linear elastic shear

bond without debonding [27, 42, 48, 54], hence ignoring the frictional

bond stresses that develop after debonding occurs. Aveston et al. [3]

assumed frictional shear bond with no debonding, hence ignoring the

elastic bond that develops for shear stresses not exceeding the bond

capacity of the interface.

To incorporate both the adhesion and the mechanical components of

bond introduced crimped or deformed fibers requires a more comprehensive

study of bond. Bond studies undertaken on reinforced concrete cannot be
directly applied to fiber-reinforced cementitious composites. The
mechanical and adhesive bond have the effect of changing both the

distribution and the average value of the shear bond at the interface.

Everything else being equal, a crimped fiber for example can develop more
bond stresses at the interface than a smooth fiber. Likewise, a matrix con-
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taining latex could develop more adhesion to the fiber, and thus induce

more bond shear stresses. The matrix composition is expected to affect the

bond properties of fiber-reinforced cementitious composites. 0

Two different analytical models of interfacial bond are derived in

Chapters 7 and 8. The model presented in this chapter is based on an

assumed known bond shear stress-slip relationship, which is used to
analytically predict the interfacial bond shear stress, as well as the normal

stress distributions in both the fiber and the matrix, when a fiber-re-
inforced concrete specimen is subjected to tensile stresses. The model

assumes perfect alignment of the fibers, as well as a square packing. The

solution applies to the case where a crack doesnot occur along the fiber or
prism considered.

7.2 BASIC ASSUMPTIONS

a) The main assumption needed for the development of the model is

the shear stress-slip relationship. As can be seen in Fig. 7.1, the
assumed relationship is bi-linear or elastic-perfectly frictional. A

region of linear elastic shear bond prevails until debonding occurs
when the shear stress reaches the maximum shear capacity of the

interface t max , at which point the stresses developed are of

frictional nature, i.e. are independent of the amount of slip.

b) It is also assumed that the fibers are aligned within the specimen,

and that they are squarely packed. A square packing means that at
any given section perpendicular to the line of stress, the existing

amount of fibers is the same. Also, within a given section, the

spatial distribution of the fibers is uniform. Fig. 7.2 shows a

square packing case.

c) Furthermore, it is assumed that each individual fiber, along with

its share of matrix act and behave independently of other fibers
and the rest of the matrix body. This assumption is essential to
simplify the analysis of the whole composite down to that of a

representative unit. The representative unit, which is a square
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prism with a fiber along its axis, is further simplified to a cylin-

der of matrix encasing one fiber (see Fig. 7.3).

d) Finally, the tensile load acting on the representative unit is as-

sumed shared by the fiber and the surrounding matrix.

7.3 MATHEMATICAL DERIVATION OF THE SHEAR STRESS

DISTRIBUTION

Using the bond stress-slip relationship assumed previously (see Fig.

7.1), the following equation holds for the elastic bond range:

't(x) = K S(x) (7.1)

The variation of slip S is equal to the difference between the strain in

the fiber and the strain in the matrix. Hence:

dS _(72= Ef(X) - £m(X )  (7.2)dx

ff (x) fm(X) (7.3)

Ef Em

F(x) T(x) (7.4)
Af Ef Am Em

where:

ff(x) = local stress in fiber

fm(x) = local stress in the matrix

F(x) = local force in fiber

T(x) = local force in the matrix

E = modulus of elasticity of the fiber

Em = modulus of elasticity of the matrix in tension

Af = area of one fiber
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a. Longitudinal section ford- (1representative unit

D

2
(d / D) =Vf

0d

4- -
b. Real cross section for c. Assumed cross section

representative unit for representative unit

Fig. 7.3 - Typical representative unit.
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Am = area of the matrix within the representative unit
0

Assuming that the representative unit is subjected to a tensile force
FO, then:

T(x) = Fo - F(x) (7.5)

therefore:

dS F(x) [FO - F(x)] (76)
dX Af Ef Am Em

S1 1 )FOx(7.7)
= (Af Ef + Am Em ) Am Em

Since a square packing is assumed, the following relationship is true:

Vf =Af (7.8)
Af + Am

where Vf is the fiber volume fraction in the composite.

It can be shown that Eq. 7.8 can be rewritten as:

dS F(x) 1 + n -n F0  Vf
dx = Af-Ef I -Vf Af Ef I -VC

(7.9)

wlere n is the modular ratio, or:

n 
0f

Em

Eq. '.9 c's.. be written as a function of the stress in the fiber ff:

dS = (x) + n ' n F0  f (7.10) 5
dx = Ef  I -Vf Af Ef 1 -Vf

Differentiating both sides of Eq. 7. 10 leads to:

d2S I + n V" d x (7.11) 0
dx 2  I E + 1 Vf dx

I I • II I0
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but dff(x) -T(x) (.2
dx Af (7.12)

where

= fiber perimeter

t(x) = local bond shear stress

thus:

d 2 S I + n Vf ) "( ' (7.13)
dx 2  = f n Vf

Recalling Eq. 5. 1, Eq. 5.13 can be rewritten as:

d2 S 4 ( Vf(7
d-x = d Ef 1 + n I TVf. K Sx) (7.14)

where d is the fiber diameter.

0 This differential equation is of the form:

S' - K 2 S = 0 (7.15)

where:

K 2  = f I + n Vf K (7.16)

The so,'tion to this differential equation is of the form:

S(x) = A sinh (Kx) + B cosh (Kx) (7.17)

The constants are determined from the boundary conditions. If the

* origin is to be taken at the center of the fiber, then:

1. @ =0 ,S =0 , hence B = 0

2. @ x =,F = Fo

2
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where X is the fraction of the total force acting on the representative unit

that is taken by the fiber tips.

The factor X is reflective of the way the force F o is applied onto the

representative unit. A critical value for X, Xcrit, would be the one for

which the force distributi(,ns in the fiber and the matrix are constant, i.e.

under equal strain conditions. If the force in the fiber is to be maximum at

the tips and minimum at mid-length, X is to be larger than Xcrit, but always

less than 1, or Xcrit < X < 1.

n Vf (
Xcrit = 1 + (n - 1) Vf (7.18)

Since t(x) = KS(x)

At sinh (Kx) (7.19)

but dff(x) _ T(x) Nl
dx - Af

therefore: 0

df(x) 4 A ic sinh (Kx) (7.20)
dxd

hence: 0

4
ff(x) = A c cosh (Kx) (7.21)

F(x) x K d A i cosh (Kx) (7.22)

F(K X d AiKcosh (K) (7.23)

K0

but F() = X Fo

it It It0
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thus: A X F0 K (7.24)
z d ic cosh(K-)

Therefore:

'I(x) = X F0 K sinh (K x) (7.25)
c d cosh(KP)

F(x) = X F0 ( cosh (K x) (7.26)
* cosh(KT)

and T(x) = F0 - F(x)

F0 I- X cosh (K)(7.27)
co sh (K )

Eq. 7.25 is valid so long as the bond stress does not exceed the bond
capacity of the interface, tmax (the bond strength), also assumed to be the

frictional strength between the matrix and the fiber. Fig. 7.4 shows typical

force distributions within the fiber and the matrix, while Fig. 7.5
represents the variation of the bond distribution with increasing applied

* stresses up to, and then past the stress that would create a shear stress

equal to Tmax. It also shows how debonding occurs in similar cases. If for

a given tensile force, the maximum theoretical shear stress in a fiber is
referred to as tI, then:

t = " --F j tanh (Kt) (7.28)

If T, is larger than Tmax, then debonding occurs, at a distance It from

the center of the fiber on each side (Fig. 7.5). Over the still bonded
region, Eq. 7.25 applies with two modifications, namely that the length is

2 t instead of , and the force is (X F0 - Cmax 41 4d) instead (X Fo), hence:

0

0
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XFo I XF

(1 1

II I
0

Fig. 7.4 Typical force distributions within the fiber F(x) and within

the matrix T(x). 0

1 1centerline of fiber

fiber•

< max

*I)(A d

mmax

It

Fig. 7/.5 -Typical shear stress distributions at the interface between the

fiber and the matrix, before and after debonding.
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(x) = FOTmax V (d)K sinh (K x) (7.29)
ic d cosh(Kt)

The value of 4t can be found by solving the following non-linear

equation in 4, or:

() = Tmax

X Fo - "max W ( "It)
or Itmax = K tanh (K t) (7.30)

Id, (Fig. 7.5), defined as half the debonded length is then equal to:
I-

41 = -- ((7.31)

7.4 NUMERICAL EXAMPLE

Let us consider the ideal case of a fiber-reinforced concrete tensile

specimen that meets the conditions mentioned in the development of the
model (perfect alignment as well as square packing, ... ). The prism has an
assumed square cross section, 3" x 3" (76.2 mm x 76.2 mm). The force
applied is P = 4500 lbs (20000 N), the modular ratio n =8 , the modulus of
elasticity of the steel fibers Ef 29,000 ksi (2x105 MPa), the fiber length r

= 2in. (50.8 mm), the factor X " 0.5 (arbitrarily chosen). The bond stress

- slip relationship is assumed to be as in Fig. 7.6, hence the bond modulus
K = 40,000 ksi/in (10900 MPa/mm), the bond strength tmax equals the

frictional bond tf = 400 psi (2.76 MPa).

Case I.

In this case, it is assumed that the diameter of the fibers d = 0.01 in
(0.254 mm), and that the fiber volume fraction Vf = 1%. Xcrit = 0.075.

First, the applied stress a c is found:

Pc c = A c
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400 ---------
,9,

300

200 K

Z 100 I0

0 I

a 0.5 1.0 1.5 2.0 2.5

SLIP (10-5 in.)

Fig. 7.6 Assumed bond shear stress versus slip relationship in

numerical example.

2.0-

1.5•

~ 0.5 Bond Strength = 0.4 Ksi 0

0.5-

0.0 0.2 0.4 0.6 0.8 1.0

x (in.) 0

Fiber mid-length, Fiber tip,
x = 0 x = 1 in.

Fig. 7.7 - Predicted bond stress distribution - Case 1.
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4500 lbs
(3 x 3) n = 500 psi = 0.5 ksi (3.45 MPa)

The force Fo applied on the representative unit is hence equal to:

t d 2  c
4 Vf-

t tO.01) 2 x 0.5
= 4 x 0.01 = 0.003927 Kips (17.5 N)

From Eq. 7.16 , K is such that:

K2 = f(1 + n 1 -Vf K

4 1 8 0.01 40000
- 29000 1 I - 0.01 0.01

or K = 24.42 in -t (0.961 mm -1)

The bond distribution is described by Eq. 7.24, or:

T(x) = F FO K I sinh (Kx)
t d cosh(KY) I

0(0. 5x0. 003927x24.42 ih(42x
x (0.01) cosh(24.42x )

- 7.572 x 10-11 sinh (24.42 x) (ksi) where x is in inche

- 5.221 x 10-10 sinh (0.961 x) (MPa) where x is in mm.

To check if debonding has occurred, the maximum theoretical bond
Istress cl is obtained @ x = 2, or:

7.572 x 10-11 sinh (24.42x!) = 1.53 ksi (10.5 MPa) >

tma x

-- 0.4 ksi (2.76 MPa)
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therefore debonding occurs, over a length = 2 Id. To obtain Id, the value of

t has to be solved for as in Eq. 7.30: 0

X Fo - Tm-ax W

d -!I K tanh (K 4t) = 'Tmax

or (0.01 x24.42 tanh(24.42xt) = 0.4it x 0.0 1

hence It = 0.885 in (22.5 mm).

I d  2

2-- 0.885 = 0.115 in (2.92 mm) 0

The bond shear stress distribution over half the fiber length is shown
in Fig, 7.7.

0
Case 2:

The diameter of the fibers d is now assumed to be 0.02 in (0.508

mm), while the fiber volume fraction Vf is taken as 10%. Xcrit = 0.47.

ac 4500 lbs 500 psi = 0.5 ksi (3.45 MPa)
(3 x 3) in2

The force Fo is now equal to:

F o  - x d 2 ac
4 Vf"

t (0.02)2 0.5
- 4 0.1 - 0.001571 Kips (6.988 N)

K2 = 1 + n V t. d

4 1 8 0.1 40000 0
290001 + 1 -0.1 0.02

.... ............. i
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or K = 22.83 in -1 (0.899 mm- 1)

The bond stress at any point can be found from:

'r~x = (X F 0 Kdcx) =IhK F J sinh (Kx)

(0. 5x0. 00 157 1x22. 83
0.0=17x28 2 sinh (22.83x)

y irx(0.02)xcosh(22.83x-)

6.943 x 10- 11 sinh (22.83 x) (ksi) where x is in

inches.

= 4.787 x 10-10 sinh (0.899 x) (MPa) where x is in mm.

The maximum theoretical bond strecs t, is obtained @ x or:

22

= 6.943 x 10-"I sinh (22.83xi) = 0.285 ki (1.97 MPa) <Trax = 0.4

ksi (2.76 MPa)

therefore there is no debonding.

The bond shear stress distribution over half the fiber length for Case

2 is shown in Fig. 7.8.

7.5 CONCLUDING REMARKS

1. The analytical bond model developed in this chapter for fiber

reinforced concrete composites is, to the authors' knowledge, the

first attempt to predict analytically the bond stress distribution at the

interface between fibers and the surrounding matrix using

experimentally obtainable data, namely the bond shear stress-slip

relationship.

2. The model predicts the shear stresses at the interface at any section,

as well as the force distributions within the fibers and the matrix.
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0.5S
0 5 j Bond Strength = 0.4 Ksi

0.4-

0.3

0.2-

S0.1

0. 0

0.0 0.2 0.4 0.6 0.8 1.0

x (in.)
I I

Fiber mid-length, Fiber tip, S
x=0 x =1 in.

Fig. 7.8 - Predicted bond stress distribution - Case 2.
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3. The method followed in deriving the model analytically can be

applied to different assumed bond stress-slip relationships, whether

linear or nonlinear. Experimentally derived bond stress-slip

relationships can be easily accomodated.

4. The model presented incorporates all the important geometric and

mechanical properties of both the fibers and the matrix.

5. In the course of the development of the model, no properties specific

to the matrix or the fiber were made (except that they both behave

linear-elastically). Hence, the same model can be used for all

fibrous composites.

6. The model can be generalized to the case of random distribution and

* orientation by introducing adequate correction factors to the value of

the volume fraction used.

0
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CHAPTER VIII

MODELING OF BOND IN FIBER-REINFORCED CONCRETE BASED ON

FORCE TRANSMISSION MECHANISM

8.1 INTRODUCTION

The model to be developed in this chapter, just like the one derived

0 in Chap. 7 analytically predicts the interfacial bond shear stress, as well as

the normal stress distributions in both the fiber and the matrix, when a

fiber-reinforced concrete specimen is subjected to tensile stresses.

However, while the model in Chap. 7 is based on an assumed bond shear

* stress versus slip relationship, the model of this chapter uses an assumed

mechanism of force transmission between the fibers and the surrounding

matrix to predict the bond and normal stress distributions at the interface

and in the fibers and matrix. In both models, a perfect alignment of the

* fibers, as well as a square packing are assumed.

This model is furthermore used to analytically predict the interfacial

bond modulus (ratio of the local shear stress and local slip under elastic

* conditions), which is shown to be location independent. An expression for

the pre-cracking strength of a cementitious fiber composite is also derived

and parametrically analyzed. Finally, the debonding stress of the

composite is derived from the model.

The model developed here is essentially based on Yankelevsky' s

work (651, with the proper modifications and additions. Yankelevsky' s

work was centered on the problem of axially loaded specimens, where a

single deformed bar is encased concentrically in a long concrete cylinder

with the bar ends exposed.
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The present model is based on an assumed interaction between un-

cracked concrete and a deformed bar through a mechanical system that uses

the same approach as that of Yankelevsky [65]. Hence, it assumes the

same mode of load transfer between the reinforcement and the matrix. The
model applies primarily to continuous fibers and to long discontinuous

fibers where it can be observed that one or more crack will cross the fiber 0

so that the load is applied to the fiber.

8.2 BASIC ASSUMPTIONS 0

a) The structural model used by Yankelevsky for a reinforced bar

embedded in concrete applies to fibers.

b) The angle a that is used in the derivation is constant. •

c) The fibers are asssumed aligned within the specimen, and are
squarely packed (Fig. 7.2).

d) Each individual fiber, along with its share of matrix acts and 0

behaves independently of other fibers and the rest of the matrix

body. The representative unit is further simplified to a cylinder

of matrix encasing one fiber (Fig. 7.3).

e) Finally, the tensile load acting on the representative unit is as-

sumed applied directly at the fiber tip.

8,3 MATHEMATICAL DERIVATION OF THE SHEAR STRESS a
DISTRIBUTION

A typical representative unit of the specimen is analyzed. This unit

consists of one fiber and a cylinder of matrix that encases it, even though
when a square packing is assumed, a typical unit would be expected to be a

fiber encased by a prism of matrix with a square cross section. However, a

circular cylinder with a cross sectional area equal to that of the prism is
chosen to ensure that all the matrix area is accounted for. The length of the

cylinder would be f, same as the length of the fiber (see Fig. 7.3). Since a
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uniform packing is assumed, the exterior diameter of this cylinder D can be

directly found from the fiber diameter d and the volume fraction of the
fibers Vf. The area of the fiber Af and that of the matrix Am are interre-

lated with the volume fraction, thus:

Vf =Af
Af + Am

d2

thus:

Vf = d2

or:

D = (8.1)

A tensile force F0 is applied to the representative unit. This force is

a fraction of the total tensile force P applied to the specimen. A fraction of
F0 is applied to the fiber end, while the balance of it is applied to the ma-
trix directly. One extreme case would be to assume that the whole force F o

is applied at the fibers' ends, while nothing is given to the matrix (Fig.

8. 1-a). Under this assumption, the tensile force in the fiber is maximum at

the fiber's ends, decaying to a minimum at the middle. Thus, the tensile

force in the matrix would be zero at the ends, and maximum at the middle.

The bond shear stress and the slip at the interface between the fiber and the
matrix would be maximum at the ends, and zero at the middle. The other

extreme case would be to assume that the matrix takes the force at the ends
in its entirety (Fig. 8.1-c). In that case, the force in the fiber would be

zero at the ends, reaching a maximum in the middle, while the tension in

the matrix would decrease from a maximum at the ends to a minimum at the
middle. The bond stress and the slip would behave in a similar way as in

the first case. If one is to assume that the force F0 is shared between the
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FF ( j(a) F O

T(x) = ,

,0

(b)
F(x) F*f

F0 (c) Fo

I0

Fig. 8.1 Typical force distribution in fiber F(x) and matrix T(x),
assuming that the unit force FO:

(a) is applied at the fibers' ends

(b) is shared by the matrix and the fiber in proportion to their

relative stiffnesses

(c) is taken entirely by the matrix ends.

• i ,,. a I I0
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matrix and the fiber in proportion to their relative stiffnesses, then the ten-
sion in the fiber would be constant throughout the fiber length, and so
would the force in the matrix (Fig. 8. 1-b). The bond shear stress as well

as the slip between the fiber and the matrix would both be nil. The model
presented herein is derived based on the first assumption, i.e. that the force
Fo is directly applied to the fibers' ends (Fig. 8.2) as in Yankelevsky's

model [65].

Defining the x-axis as being the fiber axis with the origin at one of
the ends, say the left one, a differential element of length dx of the fiber,
located at a distance x from the origin is considered (Fig. 8.3-a). The

tensile force in the fiber is resisted by inclined compressive forces dC, thus

reducing the axial force F in the fiber as x increases. The structural model

through which the resisting force dC is transferred to the matrix is shown
in Fig. 8.3-b. The compressive struts AB and A'B' make an angle a with

the x-axis, and react on the fiber by a force dC per unit length of fiber

perimeter, hence creating a compressive stress dC/dx on the fiber pe-
riphery that makes an angle ax with the fiber axis. As was mentioned

before, the angle a is assumed to be location independent, c is indeed as-

sumed to be a material property directly related to the interfacial properties

of the composite. The circumference BB' is the locus of segment centroids
of a typical disc EE' (Fig. 8.3-b). This disk would have an external

diameter D and an internal diameter d. The forces dN, dC, and dT as

shown in Fig. 8.3-b are in equilibrium. By such a mechanism, the tensile
force is reduced at a rate of dF/dx in the fiber, and is increased at an equal

rate in the matrix. The centroid location r (Fig. 8.3-b) is equal to:

D 1 d ' d 2

3 _1_+ (8.2)

but can be usually taken as D/3, especially for lower reinforcement ratios

or higher D/d such as in the case of FRC.

Forces are then interrelated through static equilibrium and compati-
bility. A differential equation in F (the axial force in the steel) is obtained
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FO F

0

Fo FF

Ac 0o

a. Actual load on b. As sumned load on
representtive unit representative unit

Fig. 8.2 Load on representative unit.

0
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F d F

~~-~4 V*

S TddT
T d

dI4V F # dC P -

dc Idol

I0
T T +dTI

Fig. 8.3 (a) Representative unit to be analyzed

(b) Structural model used in the development of the model,

as adopted from Yankelevsky.
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from compatibility equations (for more details, see Ref. 6). The general

form of the differential equation was given as:

d2FA1 d--- A2 F = - A3  (8.3)

The coefficients A1 , A2 , and A3 have been modified from their val-

ues given in [651 to accommodate the problem at hand (fiber-reinforced

concrete), as well as to include the Poisson's ratio effect. These coeffi-

cients are found to be-

4In [ 4-f Mn 9 Vf 3 M2

A - sin 2  2 sin2  q(m 2 - 1) (8.4)
4 7 Em cos 2 a

m - (8.5)

q = + (8.6)

M = [(1 + q2 ) + v (1 - q2 )] [(1 + q2 m2 ) + v (1 - q 2 m2 )] (8.7)

1 1
A2  Ef Af Em Am

mS

- Ef Af Em Am

7- (d,4 f)( + n IVf24 f Vf

- 4 E)(1 + (n 1)Vf (8.8)= / d2 E f f J 88

where:

n modular ratio

= Em (8.9)
Em
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V Poisson ratio of matrix
Fi

A3  Em Am

- F0  n (f -
Ef Af (1 - Vf)

4 V

F- dEfFn ( I V (8.10)

where:

Fo 4 Vf Ac)Pc (8.11)

in which:

PC = Total force on the composite

Ac  = Cross-sectional area of composite

d = diameter of fiber

The solution to Eq. 8.3 is of the form:

F(x) = CI e3X + C2 e-x + A (8.12)A2

where:

A 2  
(8.13)

A., Fo n Vf F; (814A2  - (n-i) Vf + 1 = (8.14)

13 can also be expressed in the following form:

[ = - (2 sin(2a) z(8.15)2 Z (8.15)
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in which:

M

Z, = ln(9W) 2 -- sin 4 (q (m 2  1 (8.16)

Vf (8.17)
Z2 n I - Vf

Factors Z1 and Z 2 are introduced for mathematical convenience and

have no particular physical significance.

The factor Ft is the product of the overall force Fo times the fiber's

relative stiffness (Eq. 8. 14), while the balance of Fo, Fm = Fo - Ff is pro-

portional to the relative stiffness of the matrix.

F = Fo - Ff

F - Vf (8.18)
0 0-1) Vf + I

To coefficients C1 and C 2 are obtained from the following boundary

conditions:

(1) @ x =0, F = Fo  (8.19)

C 1 +C 2 +FF = Fo

or C 1 + C2 = Fm (8.20)

( dF
(2) @ x =-,x = 0, and hence d-= 0. (8.21)

dF = C 1 e x  C2 0 Ox (8.22)
d,-.

Cl 3 e t/2  C 2 3 e-01/ 2 = 0

or C 1 = C2 eOt (8.23)
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(1) + (2) : C 2 e-13 + C 2 = F m

therefore:

• e-13'
C1  = Fm e 3  (8.24)m 1 + O

and
• 1

C2  = F e- 3  (8.25)C2 ~ M + O

F(x) = F( e 3  eX + 11 e +3x F (8.26)x + e-E1 e 13

and T(x) = F o - F

= Fm (I 1 +e 3t el3x x + e- e-x (8.27)

T()-dF I't(x) = -dF
dx d

-1 F= O(e eI3 x 1 e- 3x

itd 1+ eOf 1 + eP

SFo  1 - Vf e- 3 x -e x (8.28)

rtd (n-i) Vf + 1 I + e 3 f

8.4 FIBER DEBONDING

Eq. 8.28 gives the theoretical bond or shear stress distribution along

the fiber interface. However, it must be recognized that there is a limit that
the shear stress 'r cannot exceed, namely the bond shear strength of the in-

terface, tmax (Fig. 8.4). The maximum theoretical bond shear stress,
referred to as 'r1, is given by Eq. 8.28, with x = 0.

o= I F- Vf I - 0-82
7 d (n-i) Vf + 1 1 + e'(8.29)
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Bond Strength

max

SLIP

Fig. 8.4 Example of a bond-slip relationship; the bond stress doesnot
exceed the bond strength.
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If 'r1 does not exceed tmax, the bond distribution, as predicted in Eq.

8.28 holds. This means that the stress ac applied to the composite does not

cause any fiber debonding. Debonding will occur when 't = tima x. The

force Fo that would cause debonding can hence be found:

0 (Fo)deb max ((n-1) Vf + 1 (1 + e 3 f) 7t d (8.30)
e Ia , Vf) 0

But the stress in the composite ac = P/A c can be related to FO

through Eq. 8. 11. The applied composite stress that would initiate debond-
* ing (oC)db can hence be found as:

(Y = 4 V(n-I) Vf + 1 I + e-01 (8.31)(OC)deb= I (1- Vf) P d 1 - e-08

P tma x  (8.32)

In Eq. 8.32, p is a dimensionless factor that is indicative of the

strength of the bond within the composite. Here, p will be termed the

Debonding Index. Fig. 8.5 shows the variation of this factor with the
volume fraction, for different values of a. These were all chosen less than

45" in recognition of the fact that p is almost perfectly symmetrical about a

= 45; in other words, p will have almost the same value for a = 45" + c,

* and a = 45" - a,, when a1 < 45*. It is clear from the figure that for a

given angle a, the Debonding Index p increases almost linearly with the

volume fraction Vf. This curve would, nevertheless, only apply to fiber-

reinforced composites in which the fiber volume fraction is relatively low,

* say Vf ! 5%. For higher volume fractions, the interaction between the

fibers comes into the picture, hence changing the mechanics of the prob-

lem. Furthermore, everything else being equal, the closer ax is to 45, the

lower the value of p.

Fig. 8.6 shows the variation of the Debonding Index with the

modular ratio n, for different values of the volume fraction. As expected,

higher values of n, meaning stronger relative fiber moduli, lead to higher

factors. This means that everything else being equal, the higher the mod-

ulus of the fiber, the higher the debonding stress.
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Fig. 8.5 - Debonding index versus volume fraction for different values
of a.
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Fig. 8.6 Debonding index versus modular ratio for different values of

the volume fraction.
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In the majority of cases, the factor eOf can be neglected in Eq. 8. 3 1,
as the Debonding Index turned out to be basically independent of the fiber

aspect ratio.

8.5 DEBONDING LENGTH

If the applied stress on the composite cc is less than (ac)deb, the

bond distribution along the interface between a given fiber and the matrix is
as given in Eq. 8.28. On the other hand, if the composite stress exceeds
(ac)deb, then the fiber-matrix interface can be divided into two parts: a

debonded part, 2 fd long, at both ends of the fiber, and the other, I- 21d

long, that is bonded. The higher the composite stress Gc, the larger the

value of the debonded length 2 (d . There is no closed form solution for the

general case where 0 5 Id < 4/2. To find the value of half the debonded

length Id, the same differential equation described in Eq. 8.3 has to be

solved, with the following differences:

a) The length (is to be replaced with I- 2"d

b) The force F0 is to be replaced with F0 - "tmax V d

The interfacial shear stress distribution in the bonded zone becomes:

13 F 0 ( 1 - e-1 x - e-P.")e (.

"tb(X) = t-~d (n-I) Vf + 1 + (d) (8.33)

where

0 - Fo max V d

For a given P, hence (d, the length of the debonded zone can be

found by solving the equation:

lb( 0 ) = '1max

or
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13 (F0 - Tmax IV td)( 1- Vf 1 e-3 -,Y
Tmax td (n-1) Vf + 1 1 + e-

(8.34)

Therefore, to find the debonded length for a given Fo such that

(FO)deb<FO:5(Qmax nd!), the non-linear Eq. 8.34 has to be solved by trial

and error.

The bond distribution along the interface between the reinforcement

and the matrix in the case where debonding occurs is as follows:

t(x) = t max for 0 x < Id

and

13F0  1 Vf \ e-3x - e- (b-,f)e5x
't(x) = d(n 1)) for/d <c l /2

it d (n-1) Vf + 1 1 + e' (I _ x _

(8.35)

Fig. 8.7 shows two cases of loading: in one case, t, is less than

tmax, and hence no debonding occurs, while in the other, the applied stress
is larger than (Oc)deb , and hence the bond distribution at the interface is de-

scribed by Eq. 8.34. Fig. 8.8 shows the variation of the interfacial bond
shear stress distribution as the applied composite stress ac increases.

8.6 APPLICATION OF THE MODEL

8.6.1 Bond Modulus

The slip S is the relative displacement of the reinforcement with re- 0
spect to the matrix, or:
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Fig. 8.7 Interfacial bond distributions in the cases of: a) no

debonding, and b) debonding occuring.
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S(x) = - 8f (8.36)

f (Cm-f) dx

= f(EmTAm  EfF Af) dx

(YfEfr

I Vf n T E fF dx (8.37)

Replacing F and T by the expressions in Eqs. 8.26 and 8.27, and re-

placing Ff and Fm by their respective values given in Eqs. 8.14 and 8.15,
0

it can be shown that the slip S can be expressed as follows:

S(x) = 4 Fe-Ax - e-3(el3x (8.38)
i3c d2 Ef 1 + e-

It can be noticed from Eqs. 8.59 and 8.69 that the ratio of the shear

stress to the slip in the elastic range (r-to-S ratio) is independent of x, and

hence of the location. Furthermore, this ratio is constant given the volume

* fraction, the type of fibers and the matrix. This ratio, the bond modulus,

is equal to:

1C 02 (1 - Vf) d (8.39)
4 [1 + (n - 1) Vf.

Recalling the expression of j3 given in Eq. 8.17, Eq. 8.39 can be

rewritten as:

* K = sin 2 (2a) Z 2 (1 - Vf) Ef 1Z1 [I + (n 1) Vfj d (8.40)

0
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Z 2 can be replaced by its value as given in Eq. 8. 17. Eq. 8.40 hence

becomes: •

sin 2 (2a) E.
=Z d

= I Em (8.41)

where:

K sin 2 (2a) (8.42)ZI

The bond modulus K is the slope of the bond stress versus slip curve

in its elastic ascending portion (Fig. 8.9).

Since the ratio - has the same units as K, IK, is hence a dimen-

sionless factor referred to as the Bond Modulus Index (BMI). This factor

increases almost proportionally with increasing volume fraction. Figs.

8. 10 and 8. 11 show the variation of K1 as a function of the volume fraction

for different values of the angle a and as a function of the angle a for

different volume fractions Vf, respectively. As can be seen in Fig. 8. 10,

for a given volume fraction, the highest K1 is obtained for an angle (X =

45". For angles less than or greater than 45', i1 is less. The bond modu-

lus K is hence directly proportional to the elastic modulus of the matrix Em,

inversely proportional to the fiber diameter d, almost directly proportional
to sin2(2ca), of the volume fraction Vf, but is almost insensitive to the

value of the Poisson's ratio of the matrix v, even though v is included in

the expression of Kc1.

The bond modulus K is usually thought of as being an interface

property. Therefore, its dependency on the fiber volume fraction Vf is

somehow unexpected. Nevertheless, this dependency can be accounted for

by relating it to the confining effect of fibers. Indeed, the higher the
volume fraction, the closer the fibers and the smaller the diameter D of the

representative unit. S

--. =.- ==--..-.= m ni mlln mmn l l l
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8.6.2 Composite Pre-cracking Strength

The model presented here can be used to predict the pre-cracking

strength in tension of fiber-reinforced cement composites, assuming the

fibers to be perfectly aligned and squarely packed. A typical stress-elon-

gation relationship for a fiber-reinforced cementitious composite would

display an almost linear behavior up to cracking. Beyond this point, a

different behavior is observed. The maximum pre-cracking stress or the

pre-cracking strength is hence significant and is addressed in what follows.

From Eq. 8.27, the maximum tensile force in the matrix can be found

by setting x = 2. Or:

Tmax = F I 2 -f/2 (8.43)

Q F (8.44)

where:

2,= 1- (8.45)I+ e -t)

The maximum tensile stress in the matrix is hence the ratio of this

force to the area of the matrix, Am, that is:

m = Am

Q Fm

= (8.46)
Am

where:
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Am = (D 2 - d2 )  (8 -17)

It d 2 D2

- 4 (d1

- 4 d2 (vf (8.48)

The composite is assumed to crack when the tensile stress in the ma-

trix Ff reaches the tensile strength of the matrix, ft. Setting am equal to ft,

Fm is then found:

m

0

sP

the following expression:

F d 2 ( Vc (8.51)

0F)r 4 Vf f

Combining Eqs. 8.50 and 8.51, and solving for a c will give the com-
posite cracking strength (ac)cr, hence:

1
( =C)cr = I [(n- I)Vf+ lift (8.52)

Therefore, the cracking strength of the composite is the product of a

factor times the tensile strength of the matrix.

It is worth noting that in the development of this equation, it was as-

sumed that the matrix is weaker than the reinforcement. Eq. 8.52 would

therefore only pertain to composites that meet this condition.
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A closer look at the factor f2 ought to be taken. From Fq. 8.15, the

following can be written: 0

= 2 sin(2a)J (8.53)

= -(8.54)

where

°0
= 2 sin(2a) Z (8.55)

Q can now be expressed as follows:

2 Exp "W2--)
_= 2 (8.56)

1 + Exp d-

Q) is thus a function of the fiber aspect ratio d" rather than the fiber

length '. It is also function of o, which in turns depends on the angle a,

on the volume fraction Vf, on the modular ratio n, and on the Poisson ratio

of the matrix v.

The factor Q, which will be referred to as the Bonding Factor, re-

flects the quality of bond that exists between the matrix and the reinforce-

ment. In the theoretical case of a "perfect bond", Q can be taken equal to

1, whereas where there is no bond at all between the fiber and the matrix at

the interface, fl= 0, in which case Eq. 8.52 does not apply. In the case of

a perfect bond, 0 would be equal to 1 and the cracking strength of the com-

posite would then be:

(Oc)Cr = [(n - 1) Vf + 1] ft (8.57)

which is the same as the equation that could be predicted from a trans-

formed section analysis, assuming perfect strain compatibility, linear elas- 0
tic materials, continuous reinforcement, as well as a matrix weaker than the
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reinforcement. Fig. 8. 12 shows the variation of the bonding factor Q

versus the fiber aspect ratio.

In Fig. 8. 13, the cracking strength ratio, (ftcr is plotted against the

fiber volume fraction Vf, for different values of the aspect ratio. It can be

seen from the graph that for - > 60, the cracking strength ratio becomes

insensitive to the bonding factor and approaches the values predicted in Eq.

8.57. It can also be seen from Fig. 8.13 that everything else being equal,

composites reinforced with lower aspect ratio fibers have higher cracking

strengths. This could be explained by observing that a shorter fiber would

display a more uniform bond shear stress distribution at the interface. The

fibers are hence more efficient as far as bond goes. However this result is

surprizing, since the theory on which the model is based assumes that the

load is applied to the fibers thus is applicable primarily to long fibers.
While the theory predicts a peak, followed by a dip in the case of fibers

with aspect ratio = 10 (Fig. 8.13), no reasonable explanation can be pro-

vided for such a behavior.

Fig. 8. 14 shows that the cracking strength is not very sensitive to

the angle a, so long as a does not approach the extremes values of 0 or

90". Finally, the cracking strength ratio as per Eq. 8.57 is plotted in Fig.

8. 15 versus the modular ratio for different values of the volume fraction.

It can be observed that the cracking strength increases with both the volume

fraction of fibers and the modular ratio.

8.7 CONCLUDIND REMARKS

The following remarks can be made about this model:

1. This model predicts the bond shear stresses at the interface between

the fibers and the surrounding matrix in a pure tension specimen. It

also predicts the tension stresses in the fibers and in the matrix.

2. The model was used to determine theoretically the bond modulus,

which is the slope of the bond shear stress-slip curve. It was shown

that the bond modulus is location-independent.
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3. The model was also used to predict the pre-cracking strength of the

composite as a function of the tension strength of the matrix. The S
expression derived for the pre-cracking strength is based on the as-

sumption that the matrix is weaker in tension than the fiber.

4. An expression for the debonding stress, which is the stress that

needs to be applied to the composite to impend debonding, was also

derived from the model. It was a direct function of the strength of

the bond between the fiber and the matrix.

6. While the mathematical expression for the bond modulus was derived

based on the assumption that the force Fo is applied in its entirety to

the fibers' ends, it can be shown that this expression (of bond

modulus) is actually independent of this assumption. This result

came as no surprise, since the bond modulus should be a material

property that is independent of the load, or its mode of application.

As for the other expressions derived,i.e. bond stress,tension

stress,precracking strength, they were dependent on the load applica-

tion assumption. S
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